Dominic Cosgrove

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5035043/publications.pdf

Version: 2024-02-01

19	990	15	19
papers	citations	h-index	g-index
19	19	19	1218
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Glomerular basement membrane deposition of collagen $\hat{l}\pm1(\text{scp>III})$ in scp>A lport glomeruli by mesangial filopodia injures podocytes via aberrant signaling through scp>DDR1 and integrin $\hat{l}\pm2\hat{l}^21$. Journal of Pathology, 2022, 258, 26-37.	4.5	2
2	RNA-seq analysis of gene expression profiles in isolated stria vascularis from wild-type and Alport mice reveals key pathways underling Alport strial pathogenesis. PLoS ONE, 2020, 15, e0237907.	2.5	7
3	Pericyte abnormalities precede strial capillary basement membrane thickening in Alport mice. Hearing Research, 2020, 390, 107935.	2.0	5
4	Lysyl oxidase like-2 contributes to renal fibrosis inÂCol4α3/Alport mice. Kidney International, 2018, 94, 303-314.	5.2	45
5	Collagen IV diseases: A focus on the glomerular basement membrane in Alport syndrome. Matrix Biology, 2017, 57-58, 45-54.	3.6	80
6	Endothelin A receptor activation on mesangial cellsÂinitiates Alport glomerular disease. Kidney International, 2016, 90, 300-310.	5.2	42
7	Endothelin-1 mediated induction of extracellular matrix genes in strial marginal cells underlies strial pathology in Alport mice. Hearing Research, 2016, 341, 100-108.	2.0	23
8	X-Linked Alport Dogs Demonstrate Mesangial Filopodial Invasion of the Capillary Tuft as an Early Event in Glomerular Damage. PLoS ONE, 2016, 11, e0168343.	2.5	10
9	EIAV-Based Retinal Gene Therapy in the shaker1 Mouse Model for Usher Syndrome Type 1B: Development of UshStat. PLoS ONE, 2014, 9, e94272.	2.5	91
10	Laminin $\hat{l}\pm 2$ -Mediated Focal Adhesion Kinase Activation Triggers Alport Glomerular Pathogenesis. PLoS ONE, 2014, 9, e99083.	2.5	50
11	Usher protein functions in hair cells and photoreceptors. International Journal of Biochemistry and Cell Biology, 2014, 46, 80-89.	2.8	87
12	Photoreceptors in whirler mice show defective transducin translocation and are susceptible to short-term light/dark changes-induced degeneration. Experimental Eye Research, 2014, 118, 145-153.	2.6	21
13	$\hat{l}\pm1\hat{l}^21$ Integrin/Rac1-Dependent Mesangial Invasion of Glomerular Capillaries in Alport Syndrome. American Journal of Pathology, 2013, 183, 1269-1280.	3.8	34
14	Role for a Novel Usher Protein Complex in Hair Cell Synaptic Maturation. PLoS ONE, 2012, 7, e30573.	2.5	41
15	Biomechanical strain causes maladaptive gene regulation, contributing to Alport glomerular disease. Kidney International, 2009, 76, 968-976.	5.2	60
16	Role for Macrophage Metalloelastase in Glomerular Basement Membrane Damage Associated with Alport Syndrome. American Journal of Pathology, 2006, 169, 32-46.	3.8	72
17	Matrix Metalloproteinase Dysregulation in the Stria Vascularis of Mice with Alport Syndrome. American Journal of Pathology, 2005, 166, 1465-1474.	3.8	49
18	Integrin $\hat{l}\pm 1\hat{l}^21$ and Transforming Growth Factor- \hat{l}^21 Play Distinct Roles in Alport Glomerular Pathogenesis and Serve as Dual Targets for Metabolic Therapy. American Journal of Pathology, 2000, 157, 1649-1659.	3.8	168

#	Article	IF	CITATIONS
19	Ultrastructural, physiological, and molecular defects in the inner ear of a gene-knockout mouse model for autosomal Alport syndrome. Hearing Research, 1998, 121, 84-98.	2.0	103