Dominic Cosgrove

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5035043/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Integrin α1β1 and Transforming Growth Factor-β1 Play Distinct Roles in Alport Glomerular Pathogenesis and Serve as Dual Targets for Metabolic Therapy. American Journal of Pathology, 2000, 157, 1649-1659.	3.8	168
2	Ultrastructural, physiological, and molecular defects in the inner ear of a gene-knockout mouse model for autosomal Alport syndrome. Hearing Research, 1998, 121, 84-98.	2.0	103
3	EIAV-Based Retinal Gene Therapy in the shaker1 Mouse Model for Usher Syndrome Type 1B: Development of UshStat. PLoS ONE, 2014, 9, e94272.	2.5	91
4	Usher protein functions in hair cells and photoreceptors. International Journal of Biochemistry and Cell Biology, 2014, 46, 80-89.	2.8	87
5	Collagen IV diseases: A focus on the glomerular basement membrane in Alport syndrome. Matrix Biology, 2017, 57-58, 45-54.	3.6	80
6	Role for Macrophage Metalloelastase in Glomerular Basement Membrane Damage Associated with Alport Syndrome. American Journal of Pathology, 2006, 169, 32-46.	3.8	72
7	Biomechanical strain causes maladaptive gene regulation, contributing to Alport glomerular disease. Kidney International, 2009, 76, 968-976.	5.2	60
8	Laminin α2-Mediated Focal Adhesion Kinase Activation Triggers Alport Glomerular Pathogenesis. PLoS ONE, 2014, 9, e99083.	2.5	50
9	Matrix Metalloproteinase Dysregulation in the Stria Vascularis of Mice with Alport Syndrome. American Journal of Pathology, 2005, 166, 1465-1474.	3.8	49
10	Lysyl oxidase like-2 contributes to renal fibrosis inÂCol4α3/Alport mice. Kidney International, 2018, 94, 303-314.	5.2	45
11	Endothelin A receptor activation on mesangial cellsÂinitiates Alport glomerular disease. Kidney International, 2016, 90, 300-310.	5.2	42
12	Role for a Novel Usher Protein Complex in Hair Cell Synaptic Maturation. PLoS ONE, 2012, 7, e30573.	2.5	41
13	α1β1 Integrin/Rac1-Dependent Mesangial Invasion of Glomerular Capillaries in Alport Syndrome. American Journal of Pathology, 2013, 183, 1269-1280.	3.8	34
14	Endothelin-1 mediated induction of extracellular matrix genes in strial marginal cells underlies strial pathology in Alport mice. Hearing Research, 2016, 341, 100-108.	2.0	23
15	Photoreceptors in whirler mice show defective transducin translocation and are susceptible to short-term light/dark changes-induced degeneration. Experimental Eye Research, 2014, 118, 145-153.	2.6	21
16	X-Linked Alport Dogs Demonstrate Mesangial Filopodial Invasion of the Capillary Tuft as an Early Event in Glomerular Damage. PLoS ONE, 2016, 11, e0168343.	2.5	10
17	RNA-seq analysis of gene expression profiles in isolated stria vascularis from wild-type and Alport mice reveals key pathways underling Alport strial pathogenesis. PLoS ONE, 2020, 15, e0237907.	2.5	7
18	Pericyte abnormalities precede strial capillary basement membrane thickening in Alport mice. Hearing Research, 2020, 390, 107935.	2.0	5

#	Article	IF	CITATIONS
19	Glomerular basement membrane deposition of collagen α1(<scp>III</scp>) in <scp>A</scp> port glomeruli by mesangial filopodia injures podocytes via aberrant signaling through <scp>DDR1</scp> and integrin α2β1. Journal of Pathology, 2022, 258, 26-37.	4.5	2