Yu-Hong Ren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5035029/publications.pdf

Version: 2024-02-01

51	1,312	19	35
papers	citations	h-index	g-index
52	52	52	1973 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Facile, high efficiency immobilization of lipase enzyme on magnetic iron oxide nanoparticles via a biomimetic coating. BMC Biotechnology, 2011, 11, 63.	3.3	242
2	The yeast peroxisome: A dynamic storage depot and subcellular factory for squalene overproduction. Metabolic Engineering, 2020, 57, 151-161.	7.0	141
3	Fe ³⁺ -induced oxidation and coordination cross-linking in catechol–chitosan hydrogels under acidic pH conditions. RSC Advances, 2015, 5, 37377-37384.	3.6	78
4	Artificial Multienzyme Supramolecular Device: Highly Ordered Selfâ€Assembly of Oligomeric Enzymes In Vitro and In Vivo. Angewandte Chemie - International Edition, 2014, 53, 14027-14030.	13.8	64
5	Reversion of multidrug resistance by tumor targeted delivery of antisense oligodeoxynucleotides in hydroxypropyl-chitosan nanoparticles. Biomaterials, 2010, 31, 4426-4433.	11.4	61
6	Metabolic compartmentalization in yeast mitochondria: Burden and solution for squalene overproduction. Metabolic Engineering, 2021, 68, 232-245.	7.0	51
7	One-step purification and immobilization of his-tagged protein via Ni2+-functionalized Fe3O4@polydopamine magnetic nanoparticles. Biotechnology and Bioprocess Engineering, 2015, 20, 901-907.	2.6	46
8	Metabolic Engineering of <i>Saccharomyces cerevisiae</i> To Overproduce Squalene. Journal of Agricultural and Food Chemistry, 2020, 68, 2132-2138.	5.2	43
9	Enhancement of the activity of enzyme immobilized on polydopamine-coated iron oxide nanoparticles by rational orientation of formate dehydrogenase. Journal of Biotechnology, 2014, 188, 36-41.	3.8	41
10	Efficient production of (R)-(â^')-mandelic acid in biphasic system by immobilized recombinant E. coli. Journal of Biotechnology, 2013, 167, 433-440.	3.8	32
11	Anti-inï¬,ammatory effects of active constituents extracted from Chinese medicinal herbs against <i>Propionibacterium acnes</i> . Natural Product Research, 2012, 26, 1746-1749.	1.8	30
12	Enhancing Biosynthesis of a Ginsenoside Precursor by Self-Assembly of Two Key Enzymes in <i>Pichia pastoris</i> . Journal of Agricultural and Food Chemistry, 2016, 64, 3380-3385.	5.2	30
13	Enhanced itaconic acid production by selfâ€assembly of two biosynthetic enzymes in <i>Escherichia coli</i> li>. Biotechnology and Bioengineering, 2017, 114, 457-462.	3.3	30
14	Manufacturing Multienzymatic Complex Reactors <i>In Vivo</i> by Self-Assembly To Improve the Biosynthesis of Itaconic Acid in <i>Escherichia coli</i> . ACS Synthetic Biology, 2018, 7, 1244-1250.	3.8	29
15	Magnetic Catechol-Chitosan with Bioinspired Adhesive Surface: Preparation and Immobilization of ω-Transaminase. PLoS ONE, 2012, 7, e41101.	2.5	28
16	A novel technique for in situ aggregation of <i>Gluconobacter oxydans</i> using bioâ€adhesive magnetic nanoparticles. Biotechnology and Bioengineering, 2012, 109, 2970-2977.	3.3	28
17	Characterization and engineering control of the effects of reactive oxygen species on the conversion of sterols to steroid synthons in Mycobacterium neoaurum. Metabolic Engineering, 2019, 56, 97-110.	7.0	23
18	Improve the Biosynthesis of Baicalein and Scutellarein via Manufacturing Self-Assembly Enzyme Reactor <i>In Vivo</i> . ACS Synthetic Biology, 2021, 10, 1087-1094.	3.8	22

#	Article	IF	Citations
19	Design and evaluation of a phospholipase D based drug delivery strategy of novel phosphatidyl-prodrug. Biomaterials, 2017, 131, 1-14.		21
20	Engineering <i>Saccharomyces cerevisiae</i> for Hyperproduction of \hat{I}^2 -Amyrin by Mitigating the Inhibition Effect of Squalene on \hat{I}^2 -Amyrin Synthase. Journal of Agricultural and Food Chemistry, 2022, 70, 229-237.	5.2	20
21	Overcoming Multidrug Resistance in Human Carcinoma Cells by an Antisense Oligodeoxynucleotideâ^'Doxorubicin Conjugate <i>in Vitro</i> and <i>in Vivo</i> . Molecular Pharmaceutics, 2008, 5, 579-587.	4.6	16
22	Fe ³⁺ -induced bioinspired chitosan hydrogels for the sustained and controlled release of doxorubicin. RSC Advances, 2016, 6, 47940-47947.	3.6	14
23	A novel nitrilase from Ralstonia eutropha H16 and its application to nicotinic acid production. Bioprocess and Biosystems Engineering, 2017, 40, 1271-1281.	3.4	14
24	Construction and characterization of the recombinant immunotoxin RTA-4D5-KDEL targeting HER2/neu-positive cancer cells and locating the endoplasmic reticulum. Applied Microbiology and Biotechnology, 2018, 102, 9585-9594.	3.6	14
25	In vitro reversal MDR of human carcinoma cell line by an antisense oligodeoxynucleotide–doxorubicin conjugate. Biomedicine and Pharmacotherapy, 2004, 58, 520-526.	5.6	12
26	Inhibition of P-glycoprotein and increasing of drug-sensitivity of a human carcinoma cell line (KB-A-1) by an antisense oligodeoxynucleotide–doxorubicin conjugate in vitro. Biotechnology and Applied Biochemistry, 2005, 41, 137.	3.1	11
27	Construction of a reusable multi-enzyme supramolecular device via disulfide bond locking. Chemical Communications, 2015, 51, 10131-10133.	4.1	11
28	Characterization of a novel nitrilase, BGC4, from Paraburkholderia graminis showing wide-spectrum substrate specificity, a potential versatile biocatalyst for the degradation of nitriles. Biotechnology Letters, 2017, 39, 1725-1731.	2.2	11
29	Photocontrol of Itaconic Acid Synthesis in <i>Escherichia coli</i> . ACS Synthetic Biology, 2022, 11, 2080-2088.	3.8	11
30	Engineering diverse eubacteria promoters for robust Gene expression in Streptomyces lividans. Journal of Biotechnology, 2019, 289, 93-102.	3.8	10
31	A CRISPRi mediated self-inducible system for dynamic regulation of TCA cycle and improvement of itaconic acid production in Escherichia coli. Synthetic and Systems Biotechnology, 2022, 7, 982-988.	3.7	10
32	Biosynthesis of L-Erythrose by Assembly of Two Key Enzymes in <i>Gluconobacter oxydans</i> . Journal of Agricultural and Food Chemistry, 2017, 65, 7721-7725.	5.2	9
33	Establishment of a lowâ€dosageâ€lPTG inducible expression system construction method in <i>Escherichia coli</i> . Journal of Basic Microbiology, 2018, 58, 806-810.	3.3	9
34	Whole-Cell Biocatalyst for Rubusoside Production in <i>Saccharomyces cerevisiae</i> Agricultural and Food Chemistry, 2021, 69, 13155-13163.	5.2	9
35	Quantification intracellular levels of oligodeoxynucleotide-doxorubicin conjugate in human carcinoma cells in situ. Journal of Pharmaceutical and Biomedical Analysis, 2004, 36, 387-391.	2.8	8
36	Reversible Photocontrol of Lipase Activity by Incorporating a Photoswitch into the Lid Domain. ChemPhotoChem, 2017, 1, 393-396.	3.0	8

#	Article	IF	CITATIONS
37	Facile synthesis of glutathione-functionalized Fe3O4@polydopamine for separation of GST-tagged protein. Materials Letters, 2014, 128, 392-395.	2.6	7
38	Development of nitrilase-mediated process for phenylacetic acid production from phenylacetonitrile. Chemical Papers, 2017, 71, 1985-1992.	2.2	7
39	Photocontrolled reversible self-assembly of dodecamer nitrilase. Bioresources and Bioprocessing, 2017, 4, 36.	4.2	7
40	Lithocarpins Eâ€"G, Potent <scp>Antiâ€Tumor Tenelloneâ€Macrolides</scp> from the <scp>Deepâ€Sea</scp> Fungus <i>Phomopsis lithocarpus</i> <scp>FS508</scp> . Chinese Journal of Chemistry, 2021, 39, 1104-1112.	4.9	7
41	Study of the Stability of Oligodeoxynucleotide–Doxorubicin Conjugate In Vitro and Its Pharmacokinetics In Vivo by RPâ€HPLC. Journal of Liquid Chromatography and Related Technologies, 2003, 26, 3105-3115.	1.0	5
42	Acylated Aminooligosaccharides from the Yellow Sea Streptomyces sp. HO1518 as Both \hat{l}_{\pm} -Glucosidase and Lipase Inhibitors. Marine Drugs, 2020, 18, 576.	4.6	5
43	An Antisense Oligodeoxynucleotideâ€Doxorubicin Conjugate: Preparation and Its Reversal Multidrug Resistance of Human Carcinoma Cell Line In Vitro. Nucleosides, Nucleotides and Nucleic Acids, 2004, 23, 1595-1607.	1.1	4
44	Reversible photocontrol of oxidase activity by inserting a photosensitive domain into the oxidase. Bioresources and Bioprocessing, 2019, 6, .	4.2	4
45	Diversion of metabolic flux towards 5-deoxy(iso)flavonoid production via enzyme self-assembly in Escherichia coli. Metabolic Engineering Communications, 2021, 13, e00185.	3.6	4
46	Cadmium sulfide net framework nanoparticles for photo-catalyzed cell redox. RSC Advances, 2020, 10, 37820-37825.	3.6	4
47	Rational engineering in <i>Escherichia coli</i> for highâ€titer production of baicalein based on genomeâ€scale target identification. Biotechnology and Bioengineering, 2022, 119, 1916-1925.	3.3	4
48	The expression, purification, and functional evaluation of the novel tumor suppressor fusion protein IL-24-CN. Applied Microbiology and Biotechnology, 2021, 105, 7889-7898.	3.6	2
49	Rapid Mining of Novel α-Glucosidase and Lipase Inhibitors from Streptomyces sp. HO1518 Using UPLC-QTOF-MS/MS. Marine Drugs, 2022, 20, 189.	4.6	2
50	Construction of an Oscillator Gene Circuit by Negative and Positive Feedbacks. Journal of Microbiology and Biotechnology, 2016, 26, 139-144.	2.1	1
51	SAC-TRAIL, a novel anticancer fusion protein: expression, purification, and functional characterization. Applied Microbiology and Biotechnology, 2022, 106, 1511.	3.6	1