
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5034319/publications.pdf Version: 2024-02-01

I VNDA D DDIOD

#	Article	IF	CITATIONS
1	Using permanent forest plots to evaluate the resilience to fire of Tasmania's tall wet eucalypt forests. Forest Ecology and Management, 2022, 505, 119922.	3.2	9
2	Population collapse of a Gondwanan conifer follows the loss of Indigenous fire regimes in a northern Australian savanna. Scientific Reports, 2022, 12, .	3.3	7
3	The 2016 Tasmanian Wilderness Fires: Fire Regime Shifts and Climate Change in a Gondwanan Biogeographic Refugium. Ecological Studies, 2021, , 133-153.	1.2	7
4	Lack of reliable post-fire recovery mechanisms makes the iconic Tasmanian conifer. Australian Journal of Botany, 2021, 69, 162-173.	0.6	4
5	Bioclimatic drivers of fire severity across the Australian geographical range of giant <i>Eucalyptus</i> forests. Journal of Ecology, 2021, 109, 2514-2536.	4.0	11
6	Demographic Effects of Severe Fire in Montane Shrubland on Tasmania's Central Plateau. Fire, 2021, 4, 32.	2.8	7
7	AusTraits, a curated plant trait database for the Australian flora. Scientific Data, 2021, 8, 254.	5.3	73
8	Fire risk and severity decline with stand development in Tasmanian giant Eucalyptus forest. Forest Ecology and Management, 2021, 502, 119724.	3.2	24
9	Fire, herbivores and the management of temperate <i>Eucalyptus</i> savanna in Tasmania: Introducing the Beaufront fire – mammalian herbivore field experiment. Ecological Management and Restoration, 2021, 22, 140-151.	1.5	3
10	Variation in Eucalyptus delegatensis post-fire recovery strategies: The Tasmanian subspecies is a resprouter whereas the mainland Australian subspecies is an obligate seeder. Forest Ecology and Management, 2020, 473, 118292.	3.2	9
11	Classification of Post-Fire Responses of Woody Plants to include Pyrophobic Communities. Fire, 2020, 3, 15.	2.8	13
12	Multiâ€decadal stability of woody cover in a mesic eucalypt savanna in the Australian monsoon tropics. Austral Ecology, 2020, 45, 621-635.	1.5	4
13	Soil moisture thresholds for combustion of organic soils in western Tasmania. International Journal of Wildland Fire, 2020, 29, 637.	2.4	15
14	Small mammal diversity is higher in infrequently compared with frequently burnt rainforest–savanna mosaics in the north Kimberley, Australia. Wildlife Research, 2020, , .	1.4	6
15	Fire caused demographic attrition of the Tasmanian palaeoendemic conifer <i>Athrotaxis cupressoides</i> . Austral Ecology, 2019, 44, 1322-1339.	1.5	17
16	Two climateâ€sensitive treeâ€ring chronologies from Arnhem Land, monsoonal Australia. Austral Ecology, 2019, 44, 581-596.	1.5	8
17	The legacy of pasture improvement causes recruitment failure in grassy eucalypt woodland conservation reserves in the Midlands of Tasmania. Australian Journal of Botany, 2019, 67, 558.	0.6	3
18	Biomass consumption by surface fires across Earth's most fire prone continent. Global Change Biology, 2019, 25, 254-268.	9.5	39

#	Article	IF	CITATIONS
19	Differential demographic filtering by surface fires: How fuel type and fuel load affect sapling mortality of an obligate seeder savanna tree. Journal of Ecology, 2018, 106, 1010-1022.	4.0	10
20	Can trophic rewilding reduce the impact of fire in a more flammable world?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170443.	4.0	45
21	Conceptualizing Ecological Flammability: An Experimental Test of Three Frameworks Using Various Types and Loads of Surface Fuels. Fire, 2018, 1, 14.	2.8	17
22	Demographic vulnerability of an extreme xerophyte in arid Australia. Australian Journal of Botany, 2018, 66, 26.	0.6	4
23	Effect of experimental fire on seedlings of Australian and Gondwanan trees species from a Tasmanian montane vegetation mosaic. Australian Journal of Botany, 2018, 66, 511.	0.6	7
24	Water, land, fire, and forest: Multiâ€scale determinants of rainforests in the Australian monsoon tropics. Ecology and Evolution, 2017, 7, 1592-1604.	1.9	19
25	High post-fire mortality of resprouting woody plants in Tasmanian Mediterranean-type vegetation. International Journal of Wildland Fire, 2017, 26, 532.	2.4	22
26	Variable rainfall has a greater effect than fire on the demography of the dominant tree in a semiâ€arid <i>Eucalyptus</i> Âsavanna. Austral Ecology, 2017, 42, 772-782.	1.5	20
27	Fire and cattle disturbance affects vegetation structure and rain forest expansion into savanna in the Australian monsoon tropics. Journal of Biogeography, 2017, 44, 2331-2342.	3.0	17
28	Does inherent flammability of grass and litter fuels contribute to continental patterns of landscape fire activity?. Journal of Biogeography, 2017, 44, 1225-1238.	3.0	38
29	<i>Climate Change in Wildlands: Pioneering Approaches to Science and Management</i> . Edited by Andrew J. Hansen, William B. Monahan, S. Thomas Olliff, and David M. Theobald. Washington (DC): Island Press. \$35.00 (paper). xiv + 391 p.; ill.; index. ISBN: 978-1-61091-712-4. 2016 Quarterly Review of Biology, 2017, 92, 466-467.	0.1	0
30	Impact of high-severity fire in a Tasmanian dry eucalypt forest. Australian Journal of Botany, 2016, 64, 193.	0.6	40
31	Climate seasonality limits leaf carbon assimilation and wood productivity in tropical forests. Biogeosciences, 2016, 13, 2537-2562.	3.3	108
32	Measurement of inter- and intra-annual variability of landscape fire activity at a continental scale: the Australian case. Environmental Research Letters, 2016, 11, 035003.	5.2	49
33	Cause and effects of a megafire in sedge-heathland in the Tasmanian temperate wilderness. Australian Journal of Botany, 2016, 64, 513.	0.6	22
34	The relative importance of intrinsic and extrinsic factors in the decline of obligate seeder forests. Global Ecology and Biogeography, 2016, 25, 1166-1172.	5.8	54
35	Human-Imposed, Fine-Grained Patch Burning Explains the Population Stability of a Fire-Sensitive Conifer in a Frequently Burnt Northern Australia Savanna. Ecosystems, 2016, 19, 896-909.	3.4	18
36	Post-fire resprouting strategies of rainforest and savanna saplings along the rainforest–savanna boundary in the Australian monsoon tropics. Plant Ecology, 2016, 217, 711-724.	1.6	19

#	Article	IF	CITATIONS
37	Evaluating carbon storage in restoration plantings in the Tasmanian Midlands, a highly modified agricultural landscape. Rangeland Journal, 2015, 37, 477.	0.9	11
38	Aerial sowing stopped the loss of alpine ash (Eucalyptus delegatensis) forests burnt by three short-interval fires in the Alpine National Park, Victoria, Australia. Forest Ecology and Management, 2015, 342, 39-48.	3.2	49
39	Effect of landscape fires on the demography of the endangered New Caledonian conifer Callitris sulcata. Biological Conservation, 2015, 191, 130-138.	4.1	7
40	Trajectory of change in land cover and carbon stocks following European settlement in Tasmania, Australia. Anthropocene, 2015, 9, 33-40.	3.3	9
41	Macroecology of Australian Tall Eucalypt Forests: Baseline Data from a Continental-Scale Permanent Plot Network. PLoS ONE, 2015, 10, e0137811.	2.5	35
42	Across a macro-ecological gradient forest competition is strongest at the most productive sites. Frontiers in Plant Science, 2014, 5, 260.	3.6	28
43	Have plants evolved to self-immolate?. Frontiers in Plant Science, 2014, 5, 590.	3.6	58
44	Abrupt fire regime change may cause landscapeâ€wide loss of mature obligate seeder forests. Global Change Biology, 2014, 20, 1008-1015.	9.5	178
45	Projecting canopy cover change in Tasmanian eucalypt forests using dynamically downscaled regional climate models. Regional Environmental Change, 2014, 14, 1373-1386.	2.9	17
46	Big eucalypts grow more slowly in a warm climate: evidence of an interaction between tree size and temperature. Global Change Biology, 2014, 20, 2793-2799.	9.5	46
47	A warmer world will reduce tree growth in evergreen broadleaf forests: evidence from <scp>A</scp> ustralian temperate and subtropical eucalypt forests. Global Ecology and Biogeography, 2014, 23, 925-934.	5.8	66
48	Using a rainforest-flame forest mosaic to test the hypothesis that leaf and litter fuel flammability is under natural selection. Oecologia, 2014, 176, 1123-1133.	2.0	30
49	From desert to rainforest, sapwood width is similar in the widespread conifer Callitris columellaris. Trees - Structure and Function, 2013, 27, 123-129.	1.9	2
50	Demography and growth of subadult savanna trees: interactions of life history, size, fire season, and grassy understory. Ecological Monographs, 2013, 83, 67-93.	5.4	70
51	Detecting trends in tree growth: not so simple. Trends in Plant Science, 2013, 18, 11-17.	8.8	222
52	Land clearance not dieback continues to drive tree loss in a Tasmanian rural landscape. Regional Environmental Change, 2013, 13, 955-967.	2.9	11
53	Climate, not Aboriginal landscape burning, controlled the historical demography and distribution of fire-sensitive conifer populations across Australia. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20132182.	2.6	31
54	Conservative water management in the widespread conifer genus Callitris. AoB PLANTS, 2013, 5, plt052-plt052.	2.3	25

#	Article	IF	CITATIONS
55	Contracting Tasmanian montane grasslands within a forest matrix is consistent with cessation of Aboriginal fire management. Austral Ecology, 2013, 38, 627-638.	1.5	35
56	Variation in stem radial growth of the Australian conifer, Callitris columellaris, across the world's driest and least fertile vegetated continent. Trees - Structure and Function, 2012, 26, 1169-1179.	1.9	11
57	Fire weather risk differs across rain forest—savanna boundaries in the humid tropics of northâ€eastern Australia. Austral Ecology, 2012, 37, 915-925.	1.5	46
58	Population structures of the widespread Australian conifer Callitris columellaris are a bio-indicator of continental environmental change. Forest Ecology and Management, 2011, 262, 252-262.	3.2	42
59	Putting plant resistance traits on the map: a test of the idea that plants are better defended at lower latitudes. New Phytologist, 2011, 191, 777-788.	7.3	155
60	Ecological Models and Data in R. Austral Ecology, 2011, 36, no-no.	1.5	1
61	Continental-scale climatic drivers of growth ring variability in an Australian conifer. Trees - Structure and Function, 2011, 25, 925-934.	1.9	13
62	Isolation and characterization of 52 polymorphic EST‧SR markers for <i>Callitris columellaris</i> (Cupressaceae). American Journal of Botany, 2011, 98, e363-8.	1.7	8
63	The roles of statistical inference and historical sources in understanding landscape change: the case of feral buffalo in the freshwater floodplains of Kakadu National Park. Journal of Biogeography, 2010, 37, 195-199.	3.0	7
64	Experimental evidence that fire causes a tree recruitment bottleneck in an Australian tropical savanna. Journal of Tropical Ecology, 2010, 26, 595-603.	1.1	65
65	Bamboo, fire and flood: consequences of disturbance for the vegetative growth of a clumping, clonal plant. Plant Ecology, 2010, 208, 319-332.	1.6	17
66	Frequent fires reduce tree growth in northern Australian savannas: implications for tree demography and carbon sequestration. Global Change Biology, 2010, 16, 331-343.	9.5	107
67	Using generalized autoregressive error models to understand fire–vegetation–soil feedbacks in a mulga–spinifex landscape mosaic. Journal of Biogeography, 2010, 37, 2169-2182.	3.0	42
68	Retreating <i>Melaleuca</i> swamp forests in Kakadu National Park: Evidence of synergistic effects of climate change and past feral buffalo impacts. Austral Ecology, 2010, 35, 898-905.	1.5	27
69	A wide diversity of epicormic structures is present in Myrtaceae species in the northern Australian savanna biome - implications for adaptation to fire. Australian Journal of Botany, 2010, 58, 493.	0.6	50
70	What limits the distribution and abundance of the native conifer Callitris glaucophylla (Cupressaceae) in the West MacDonnell Ranges, central Australia?. Australian Journal of Botany, 2010, 58, 554.	0.6	9
71	Fire controls population structure in four dominant tree species in a tropical savanna. Oecologia, 2009, 161, 505-515.	2.0	52
72	Decadal dynamics of tree cover in an Australian tropical savanna. Austral Ecology, 2009, 34, 601-612.	1.5	42

#	Article	IF	CITATIONS
73	Environmental and demographic correlates of tree recruitment and mortality in north Australian savannas. Forest Ecology and Management, 2009, 257, 66-74.	3.2	52
74	Spatioâ€ŧemporal trends in tree cover of a tropical mesic savanna are driven by landscape disturbance. Journal of Applied Ecology, 2008, 45, 1304-1311.	4.0	63
75	Do feral buffalo (<i>Bubalus bubalis</i>) explain the increase of woody cover in savannas of Kakadu National Park, Australia?. Journal of Biogeography, 2008, 35, 1976-1988.	3.0	30
76	Fire maintains an Acacia aneura shrubland—Triodia grassland mosaic in central Australia. Journal of Arid Environments, 2008, 72, 34-47.	2.4	48
77	Growth and survival of termite-piped Eucalyptus tetrodonta and E. miniata in northern Australia: Implications for harvest of trees for didgeridoos. Forest Ecology and Management, 2008, 256, 328-334.	3.2	20
78	Leaf Axil Anatomy and Bud Reserves in 21 Myrtaceae Species from Northern Australia. International Journal of Plant Sciences, 2008, 169, 1174-1186.	1.3	35
79	Long-term effects of saline irrigation water on 'Valencia' orange trees: relationships between growth and yield, and salt levels in soil and leaves. Australian Journal of Agricultural Research, 2007, 58, 349.	1.5	40
80	Dynamics of Acacia aneura—Triodia boundaries using carbon (14C and δ 13C) and nitrogen (δ15N) signatures in soil organic matter in central Australia. Holocene, 2007, 17, 311-318.	1.7	27
81	Long-term effects of saline irrigation water on growth, yield, and fruit quality of 'Valencia' orange trees. Australian Journal of Agricultural Research, 2007, 58, 342.	1.5	34
82	Tree-piping termites and growth and survival of host trees in savanna woodland of north Australia. Journal of Tropical Ecology, 2007, 23, 611-622.	1.1	45
83	Growth and survival of two north Australian relictual tree species, Allosyncarpia ternata (Myrtaceae) and Callitris intratropica (Cupressaceae). Ecological Research, 2007, 22, 228-236.	1.5	33
84	Environmental and allometric drivers of tree growth rates in a north Australian savanna. Forest Ecology and Management, 2006, 234, 164-180.	3.2	57
85	The Kruger Experience. Ecology and Management of Savanna Heterogeneity. Austral Ecology, 2005, 30, 238-239.	1.5	0
86	Intra-specific variation in leaf attributes of four savanna tree species across a rainfall gradient in tropical Australia. Australian Journal of Botany, 2005, 53, 323.	0.6	28
87	Why do evergreen trees dominate the Australian seasonal tropics?. Australian Journal of Botany, 2005, 53, 379.	0.6	101
88	Impact of Aboriginal landscape burning on woody vegetation in <i>Eucalyptus tetrodonta</i> savanna in Arnhem Land, northern Australia. Journal of Biogeography, 2004, 31, 807-817.	3.0	35
89	Seasonal differences in leaf attributes in Australian tropical tree species: family and habitat comparisons. Functional Ecology, 2004, 18, 707-718.	3.6	59
90	The worldwide leaf economics spectrum. Nature, 2004, 428, 821-827.	27.8	6,489

#	Article	IF	CITATIONS
91	Landscape analysis of Aboriginal fire management in Central Arnhem Land, north Australia. Journal of Biogeography, 2004, 31, 207-223.	3.0	102
92	Tree growth rates in north Australian savanna habitats: seasonal patterns and correlations with leaf attributes. Australian Journal of Botany, 2004, 52, 303.	0.6	87
93	Short Communication: Leaf trait relationships in Australian plant species. Functional Plant Biology, 2004, 31, 551.	2.1	123
94	Leaf attributes in the seasonally dry tropics: a comparison of four habitats in northern Australia. Functional Ecology, 2003, 17, 504-515.	3.6	113
95	Yield-salinity relationships of different grapevine (Vitis vinifera L.) scion-rootstock combinations. Australian Journal of Grape and Wine Research, 2002, 8, 150-156.	2.1	65
96	Ecophysiology of trees of seasonally dry tropics: Comparisons among phenologies. Advances in Ecological Research, 2001, 32, 113-197.	2.7	169
97	Seasonal changes in hydraulic conductance, xylem embolism and leaf area inEucalyptus tetrodontaandEucalyptus miniatasaplings in a north Australian savanna. Plant, Cell and Environment, 2000, 23, 955-965.	5.7	36
98	Seasonal Changes in Leaf Water Characteristics of Eucalyptus tetrodonta and Terminalia ferdinandiana Saplings in a Northern Australian Savanna. Australian Journal of Botany, 1999, 47, 587.	0.6	32
99	Seasonal and Diurnal Patterns of Carbon Assimilation, Stomatal Conductance and Leaf Water Potential in Eucalyptus tetrodonta Saplings in a Wet - Dry Savanna in Northern Australia. Australian Journal of Botany, 1997, 45, 241.	0.6	130
100	Seasonal Trends in Carbon Assimilation, Stomatal Conductance, Pre-dawn Leaf Water Potential and Growth in Terminalia ferdinandiana, a Deciduous Tree of Northern Australian Savannas. Australian Journal of Botany, 1997, 45, 53.	0.6	60
101	Influence of rootstock and trellis systems on the productivity of Sultana grapevines. Australian Journal of Experimental Agriculture, 1993, 33, 935.	1.0	1
102	Sodium chloride and soil texture interactions in irrigated field grown sultana grapevines. II. Plant mineral content, growth and physiology. Australian Journal of Agricultural Research, 1992, 43, 1067.	1.5	72
103	Sodium chloride and soil texture interactions in irrigated field grown sultana grapevines. I. Yield and fruit quality. Australian Journal of Agricultural Research, 1992, 43, 1051.	1.5	47
104	Sodium chloride and soil texture interactions in irrigated field grown sultana grapevines. III. Soil and root system effects. Australian Journal of Agricultural Research, 1992, 43, 1085.	1.5	19
105	Water Relations and Ion Concentrations of Leaves on Salt-Stressed Citrus Plants. Functional Plant Biology, 1983, 10, 265.	2.1	59
106	Effects of accumulation of 3-O-methylglucose on growth and osmotic regulation in Chlorella emersonii. Plant, Cell and Environment, 1982, 5, 413-416.	5.7	11
107	Alcoholic Fermentation and Malate Metabolism in Rice Germinating at Low Oxygen Concentrations. Functional Plant Biology, 1978, 5, 15.	2.1	40