Dulin Yin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/503421/publications.pdf

Version: 2024-02-01

163 papers	5,088 citations	94381 37 h-index	63 g-index
163	163	163	6410
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	EDTA-Cross-Linked \hat{l}^2 -Cyclodextrin: An Environmentally Friendly Bifunctional Adsorbent for Simultaneous Adsorption of Metals and Cationic Dyes. Environmental Science &	4.6	402
2	Microwave-assisted hydrolysis of crystalline cellulose catalyzed by biomass char sulfonic acids. Green Chemistry, 2010, 12, 696.	4.6	241
3	Polyethylenimine-cross-linked cellulose nanocrystals for highly efficient recovery of rare earth elements from water and a mechanism study. Green Chemistry, 2017, 19, 4816-4828.	4.6	200
4	Adsorption of Cd(II) and Pb(II) by a novel EGTA-modified chitosan material: Kinetics and isotherms. Journal of Colloid and Interface Science, 2013, 409, 174-182.	5.0	178
5	An EDTA-Î ² -cyclodextrin material for the adsorption of rare earth elements and its application in preconcentration of rare earth elements in seawater. Journal of Colloid and Interface Science, 2016, 465, 215-224.	5.0	178
6	Green Synthesis of Magnetic EDTA- and/or DTPA-Cross-Linked Chitosan Adsorbents for Highly Efficient Removal of Metals. Industrial & Engineering Chemistry Research, 2015, 54, 1271-1281.	1.8	133
7	Metal–Organic Frameworkâ€Derived Materials for Sodium Energy Storage. Small, 2018, 14, 1702648.	5.2	129
8	Adsorption kinetics, isotherms and mechanisms of $Cd(II)$, $Pb(II)$, $Co(II)$ and $Ni(II)$ by a modified magnetic polyacrylamide microcomposite adsorbent. Journal of Water Process Engineering, 2014, 4, 47-57.	2.6	93
9	One-pot synthesis of trifunctional chitosan-EDTA- \hat{l}^2 -cyclodextrin polymer for simultaneous removal of metals and organic micropollutants. Scientific Reports, 2017, 7, 15811.	1.6	89
10	Catalytic aerobic oxidation of 5-hydroxymethylfurfural over VO2+ and Cu2+ immobilized on amino functionalized SBA-15. Chemical Engineering Journal, 2016, 283, 1315-1321.	6.6	86
11	N-rich carbon coated CoSnO ₃ derived from <i>in situ</i> construction of a Co–MOF with enhanced sodium storage performance. Journal of Materials Chemistry A, 2018, 6, 4839-4847.	5.2	84
12	Electrochemical degradation of 2-diethylamino-6-methyl-4-hydroxypyrimidine using three-dimensional electrodes reactor with ceramic particle electrodes. Separation and Purification Technology, 2015, 156, 588-595.	3.9	73
13	Bamboo-derived porous biochar for efficient adsorption removal of dibenzothiophene from model fuel. Fuel, 2018, 211, 121-129.	3.4	73
14	Task-specific basic ionic liquid immobilized on mesoporous silicas: Efficient and reusable catalysts for Knoevenagel condensation in aqueous media. Microporous and Mesoporous Materials, 2010, 136, 10-17.	2.2	71
15	Ionic liquid-functionalized biochar sulfonic acid as a biomimetic catalyst for hydrolysis of cellulose and bamboo under microwave irradiation. Green Chemistry, 2012, 14, 1928.	4.6	71
16	Easily recyclable polymeric ionic liquid-functionalized chiral salen Mn(III) complex for enantioselective epoxidation of styrene. Journal of Catalysis, 2009, 263, 284-291.	3.1	70
17	Visible-light-responsive sulfated vanadium-doped TS-1 with hollow structure: Enhanced photocatalytic activity in selective oxidation of cyclohexane. Journal of Catalysis, 2015, 330, 208-221.	3.1	70
18	Bifunctional H2WO4/TS-1 catalysts for direct conversion of cyclohexane to adipic acid: Active sites and reaction steps. Applied Catalysis B: Environmental, 2016, 192, 325-341.	10.8	70

#	Article	IF	Citations
19	Effectively Leveraging Solar Energy through Persistent Dual Red Phosphorescence: Preparation, Characterization, and Density Functional Theory Study of Ca ₂ Zn ₄ Ti ₁₆ O ₃₈ :Pr ³⁺ . Journal of Physical Chemistry C, 2010, 114, 7196-7204.	1.5	69
20	3D hollow porous carbon microspheres derived from Mn-MOFs and their electrochemical behavior for sodium storage. Journal of Materials Chemistry A, 2017, 5, 23550-23558.	5.2	69
21	Synthesis of chalcones catalyzed by a novel solid sulfonic acid from bamboo. Catalysis Communications, 2008, 9, 1579-1582.	1.6	67
22	Selective hydrogenolysis of 5-hydroxymethylfurfural to produce biofuel 2, 5-dimethylfuran over Ni/ZSM-5 catalysts. Fuel, 2020, 274, 117853.	3.4	67
23	Synthesis of diphenylmethane derivatives in Lewis acidic ionic liquids. Journal of Molecular Catalysis A, 2006, 245, 260-265.	4.8	60
24	Immobilized Chloroferrate Ionic Liquid: An Efficient and Reusable Catalyst for Synthesis of Diphenylmethane and its Derivatives. Catalysis Letters, 2008, 123, 252-258.	1.4	59
25	Enhancing Solar Energy Conversion Efficiency: A Tunable Dual-Excitation Dual-Emission Phosphors and Time-Dependent Density Functional Theory Study. Journal of Physical Chemistry C, 2009, 113, 6298-6302.	1.5	52
26	Spanning QTAIM topology phase diagrams of water isomers W4, W5 and W6. Physical Chemistry Chemical Physics, 2011, 13, 11644.	1.3	48
27	Solvent-free selective oxidation of toluene by oxygen over MnOx/SBA-15 catalysts: Relationship between catalytic behavior and surface structure. Chemical Engineering Journal, 2015, 280, 737-747.	6.6	46
28	Hydrolysis of cellulose into reducing sugars in ionic liquids. Fuel, 2016, 164, 46-50.	3.4	45
29	Air-Induced Degradation and Electrochemical Regeneration for the Performance of Layered Ni-Rich Cathodes. ACS Applied Materials & Samp; Interfaces, 2019, 11, 44036-44045.	4.0	45
30	Towards understanding performance differences between approximate density functionals for spin states of iron complexes. Journal of Chemical Physics, 2006, 125, 174102.	1.2	44
31	Metal chlorides-catalyzed selective oxidation of cyclohexane by molecular oxygen under visible light irradiation. Journal of Catalysis, 2012, 286, 6-12.	3.1	42
32	Impact of Lewis Acids on Dielsâ^'Alder Reaction Reactivity: A Conceptual Density Functional Theory Study. Journal of Physical Chemistry A, 2008, 112, 9970-9977.	1.1	41
33	(nBu4N)4W10O32-catalyzed selective oxygenation of cyclohexane by molecular oxygen under visible light irradiation. Applied Catalysis B: Environmental, 2015, 164, 113-119.	10.8	40
34	Microwave-dried \hat{l}_{\pm} -Fe2O3 as a highly efficient catalyst for ortho-methylation of phenol with methanol. Fuel, 2016, 182, 373-381.	3.4	40
35	Effective simulation of biological systems: Choice of density functional and basis set for heme-containing complexes. Chemical Physics Letters, 2007, 434, 149-154.	1.2	39
36	A moderate and efficient method for oxidation of ethylbenzene with hydrogen peroxide catalyzed by 8-quinolinolato manganese(III) complexes. Journal of Molecular Catalysis A, 2010, 331, 106-111.	4.8	39

#	Article	IF	CITATIONS
37	Ultrathin LiV ₂ O ₄ Layers Modified LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ Single rystal Cathodes with Enhanced Activity and Stability. Advanced Materials Interfaces, 2019, 6, 1901368.	1.9	38
38	Covalently linked organo-sulfonic acid modified titanate nanotube hybrid nanostructures for the catalytic esterification of levulinic acid with n-butyl alcohol. Chemical Engineering Journal, 2019, 361, 571-577.	6.6	38
39	High Regioselective DielsAlder Reaction of Myrcene with Acrolein Catalyzed by Zinc-Containing Ionic Liquids. Advanced Synthesis and Catalysis, 2005, 347, 137-142.	2.1	37
40	Visible light-triggered vanadium-substituted molybdophosphoric acids to catalyze liquid phase oxygenation of cyclohexane to KA oil by nitrous oxide. Applied Catalysis B: Environmental, 2016, 182, 392-404.	10.8	37
41	Biochar sulfonic acid immobilized chlorozincate ionic liquid: an efficiently biomimetic and reusable catalyst for hydrolysis of cellulose and bamboo under microwave irradiation. Cellulose, 2014, 21, 1227-1237.	2.4	36
42	A non-nitric acid method of adipic acid synthesis: organic solvent- and promoter-free oxidation of cyclohexanone with oxygen over hollow-structured Mn/TS-1 catalysts. Green Chemistry, 2015, 17, 1884-1892.	4.6	36
43	Oxidation of cyclohexane to adipic acid catalyzed by Mn-doped titanosilicate with hollow structure. Catalysis Communications, 2015, 58, 46-52.	1.6	36
44	Effective transformation of cellulose to 5-hydroxymethylfurfural catalyzed by fluorine anion-containing ionic liquid modified biochar sulfonic acids in water. Cellulose, 2017, 24, 95-106.	2.4	35
45	Selective conversion of biomass-derived furfuryl alcohol into n-butyl levulinate over sulfonic acid functionalized TiO2 nanotubes. Green Energy and Environment, 2022, 7, 257-265.	4.7	34
46	Selective oxidation of alcohols with hydrogen peroxide catalyzed by hexadentate binding 8-quinolinolato manganese(III) complexes. Journal of Catalysis, 2009, 261, 110-115.	3.1	33
47	Epoxidation of styrene over gold nanoparticles supported on organic–inorganic hybrid mesoporous silicas with aqueous hydrogen peroxide. Microporous and Mesoporous Materials, 2009, 126, 159-165.	2.2	33
48	Manganese-containing hollow TS-1: Description of the catalytic sites and surface properties for solvent-free oxidation of ethylbenzene. Chemical Engineering Journal, 2017, 313, 1382-1395.	6.6	33
49	Synergistic hollow CoMo oxide dual catalysis for tandem oxygen transfer: Preferred aerobic epoxidation of cyclohexene to 1,2-epoxycyclohexane. Applied Catalysis B: Environmental, 2018, 225, 180-196.	10.8	33
50	Aerobic Oxidation of Ethylbenzene Co-catalyzed by N-Hydroxyphthalimide and Oxobis(8-Quinolinolato) Vanadium (IV) Complexes. Chinese Journal of Catalysis, 2011, 32, 1342-1348.	6.9	32
51	Selective oxidation of 5-hydroxymethylfurfural into 2,5-diformylfuran over VPO catalysts under atmospheric pressure. RSC Advances, 2019, 9, 14242-14246.	1.7	31
52	Spanning Set of Silica Cluster Isomer Topologies from QTAIM. Journal of Physical Chemistry A, 2011, 115, 12503-12511.	1.1	28
53	Gold nanoparticles supported on periodic mesoporous organosilicas for epoxidation of olefins: Effects of pore architecture and surface modification method of the supports. Microporous and Mesoporous Materials, 2011, 143, 426-434.	2.2	28
54	Study on the formation of photoactive species in XPMo 12-n V n O 40 - HCl system and its effect on photocatalysis oxidation of cyclohexane by dioxygens under visible light irradiation. Applied Catalysis B: Environmental, 2017, 214, 89-99.	10.8	28

#	Article	IF	CITATIONS
55	Synergistic hydrogen atom transfer with the active role of solvent: Preferred one-step aerobic oxidation of cyclohexane to adipic acid by N-hydroxyphthalimide. Journal of Catalysis, 2019, 378, 256-269.	3.1	28
56	Titanate nanotubes-bonded organosulfonic acid as solid acid catalyst for synthesis of butyl levulinate. RSC Advances, 2018, 8, 3657-3662.	1.7	27
57	A novel polymeric chiral salen Mn(III) complex as solvent-regulated phase transfer catalyst in the asymmetric epoxidation of styrene. Journal of Molecular Catalysis A, 2006, 259, 125-132.	4.8	26
58	Beckmann rearrangement of cyclohexanone oxime to $\hat{l}\mu$ -caprolactam catalyzed by sulfonic acid resin in DMSO. Catalysis Communications, 2008, 9, 1521-1526.	1.6	26
59	Vanadiumâ€Substituted Tungstophosphoric Acids as Efficient Catalysts for Visibleâ€Lightâ€Driven Oxygenation of Cyclohexane by Dioxygen. ChemCatChem, 2015, 7, 2637-2645.	1.8	26
60	Heteroatom-induced band-reconstruction of metal vanadates for photocatalytic cyclohexane oxidation towards KA-oil selectivity. Applied Catalysis A: General, 2019, 575, 120-131.	2.2	26
61	Base-free oxidation of 5-hydroxymethylfurfural to 2, 5-furan dicarboxylic acid over nitrogen-containing polymers supported Cu-doped MnO2 nanowires. Applied Surface Science, 2021, 565, 150479.	3.1	26
62	5â€Chloroâ€7â€iodoâ€8â€quinolinolatomanganese(III) with the Feature of pHâ€Regulated Molecular Switches as Highly Efficient Catalyst for Epoxidation of Olefins with Hydrogen Peroxide. Advanced Synthesis and Catalysis, 2008, 350, 802-806.	a 2.1	25
63	A Simple and Environmentally Benign Method for Sulfoxidation of Sulfides with Hydrogen Peroxide. Industrial & Description of Sulfides with Hydrogen Peroxide.	1.8	25
64	A novel micro-emulsion catalytic system for highly selective hydroxylation of benzene to phenol with hydrogen peroxide. Catalysis Communications, 2005, 6, 638-643.	1.6	24
65	Efficient synthesis of 5-ethoxymethylfurfural from biomass-derived 5-hydroxymethylfurfural over sulfonated organic polymer catalyst. RSC Advances, 2021, 11, 3585-3595.	1.7	24
66	Selective oxidation of biomass derived 5-hydroxymethylfurfural to 2, 5-diformylfuran using sodium nitrite. Journal of Energy Chemistry, 2016, 25, 117-121.	7.1	23
67	Thioanisole oxidation with hydrogen peroxide catalyzed by hexadentate 8-quinolinolato manganese(III) complexes. Journal of Molecular Catalysis A, 2009, 307, 93-97.	4.8	22
68	Acid–base synergistic catalysis of biochar sulfonic acid bearing polyamide for microwave-assisted hydrolysis of cellulose in water. Cellulose, 2019, 26, 751-762.	2.4	22
69	Efficient base-free oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over copper-doped manganese oxide nanorods with tert-butanol as solvent. Frontiers of Chemical Science and Engineering, 2021, 15, 960-968.	2.3	22
70	Vapor-phase highly selective O-methylation of catechol with methanol over ZnCl2 modified Î ³ -Al2O3 catalysts. Journal of Molecular Catalysis A, 2005, 232, 69-75.	4.8	21
71	Light-triggered oxy-chlorination of cyclohexane by metal chlorides. Applied Catalysis A: General, 2014, 469, 483-489.	2.2	21
72	Mesoporous silica gel as an effective and eco-friendly catalyst for highly selective preparation of cyclohexanone oxime by vapor phase oxidation of cyclohexylamine with air. Journal of Catalysis, 2016, 338, 239-249.	3.1	21

#	Article	IF	Citations
73	A novel route for preparation of Mn-containing hollow framework TS-1, and its selective allylic oxidation of cyclohexene. RSC Advances, 2016, 6, 3729-3734.	1.7	21
74	Gold Nanoparticles Stabilized by Task-Specific Oligomeric Ionic Liquid for Styrene Epoxidation Without Using VOCs as Solvent. Catalysis Letters, 2009, 130, 489-495.	1.4	20
75	An Anionâ€Conjugated Polyelectrolyte Designed for the Selective and Sensitive Detection of Silver(I). Chemistry - an Asian Journal, 2011, 6, 1500-1504.	1.7	20
76	A recyclable Pd colloidal catalyst for liquid phase hydrogenation of \hat{l}_{\pm} -pinene. Journal of Industrial and Engineering Chemistry, 2015, 26, 333-334.	2.9	20
77	The regioselectivity of Diels–Alder reaction of myrcene with carbonyl-containing dienophiles catalysed by Lewis acids. Journal of Molecular Catalysis A, 1999, 148, 87-95.	4.8	19
78	ZnCl2 supported on NaY zeolite by solid-state interaction under microwave irradiation and used as heterogeneous catalysts for high regioselective Diels–Alder reaction of myrcene and acrolein. Journal of Molecular Catalysis A, 2004, 209, 171-177.	4.8	19
79	Halogenated macroporous sulfonic resins as efficient catalysts for the Biginelli reaction. Catalysis Communications, 2016, 77, 18-21.	1.6	19
80	Development of an Efficient Synthetic Process for Broflanilide. Organic Process Research and Development, 2020, 24, 1024-1031.	1.3	19
81	Preparation of chiral oxovanadium (IV) Schiff base complex functionalized by ionic liquid for enantioselective oxidation of methyl aryl sulfides. Catalysis Communications, 2011, 12, 1488-1491.	1.6	18
82	Rapid profiling and identification of anthocyanins in fruits with Hadamard transform ion mobility mass spectrometry. Food Chemistry, 2015, 177, 225-232.	4.2	18
83	Mild, one-step hydrothermal synthesis of carbon-coated CdS nanoparticles with improved photocatalytic activity and stability. Chinese Journal of Catalysis, 2015, 36, 1077-1085.	6.9	18
84	Catalytic Transfer Hydrogenation of Biomass-Derived Ethyl Levulinate into Gamma-Valerolactone Over Graphene Oxide-Supported Zirconia Catalysts. Catalysis Letters, 2019, 149, 2749-2757.	1.4	18
85	The dispersion and solid-state ion exchange of ZnCl2 onto the surface of NaY zeolite using microwave irradiation. Microporous and Mesoporous Materials, 1998, 24, 123-126.	2.2	17
86	Ti complexes assembled HMS as effective catalysts for epoxidation of alkene. Journal of Molecular Catalysis A, 2004, 208, 159-166.	4.8	17
87	A Novel Route to One-step Formation of É>-caprolactam from Cyclohexane and Nitrosyl Sulfuric Acid Catalyzed by VPO Composites. Catalysis Letters, 2007, 118, 129-133.	1.4	17
88	One-step synthesis of $\hat{l}\mu$ -caprolactam from cyclohexane and nitrosyl sulfuric acid catalyzed by VPO supported transition metal composites. Catalysis Communications, 2008, 9, 2136-2139.	1.6	17
89	Cooperative chiral salen Ti ^{IV} catalyst supported on ionic liquid-functionalized graphene oxide accelerates asymmetric sulfoxidation in water. Catalysis Science and Technology, 2017, 7, 5944-5952.	2.1	16
90	Design, Synthesis, and Acaricidal Activities of Novel Pyrazole Acrylonitrile Compounds. Journal of Heterocyclic Chemistry, 2017, 54, 1121-1128.	1.4	16

#	Article	IF	Citations
91	Oxidation of anethole with hydrogen peroxide catalyzed by oxovanadium aromatic carboxylate complexes. Catalysis Communications, 2008, 10, 29-32.	1.6	15
92	One-pot three-component Mannich reaction catalyzed by sucrose char sulfonic acid. Frontiers of Chemical Engineering in China, 2009, 3, 201-205.	0.6	15
93	Chlorocuprate Ionic Liquid Functionalized Biochar Sulfonic Acid as an Efficiently Biomimetic Catalyst for Direct Hydrolysis of Bamboo under Microwave Irradiation. Industrial & Engineering Chemistry Research, 2013, 52, 11537-11543.	1.8	15
94	8-Quinolinolato iron(III)-catalyzed oxygenation of cyclohexane with hydrogen peroxide under heating or visible light irradiation. Journal of Molecular Catalysis A, 2014, 383-384, 46-52.	4.8	15
95	lonic liquid-assisted formation of lanthanide metal-organic framework nano/microrods for superefficient removal of Congo red. Chemical Research in Chinese Universities, 2015, 31, 899-903.	1.3	15
96	Visible-light-mediated remote aliphatic C H oxyfunctionalization over CuCl2 decorated hollowed-TS-1 photocatalysts. Applied Catalysis B: Environmental, 2022, 302, 120851.	10.8	15
97	The <i>cis</i> -effect using the topology of the electronic charge density. Molecular Physics, 2013, 111, 793-805.	0.8	14
98	Selective hydrogenation of citral to 3,7-dimethyloctanal over activated carbon supported nano-palladium under atmospheric pressure. Chemical Engineering Journal, 2015, 263, 290-298.	6.6	14
99	Preparation of Fe2O3 doped SBA-15 for vapor phase ortho-position C-alkylation of phenol with methanol. Catalysis Communications, 2017, 92, 90-94.	1.6	13
100	Catalytic performance of TS-1 in oxidative cleavage of 1-alkenes with H2O2. Catalysis Communications, 2019, 126, 40-43.	1.6	13
101	BIOMASS CHAR SULFONIC ACIDS (BC-SO3H)-CATALYZED HYDROLYSIS OF BAMBOO UNDER MICROWAVE IRRADIATION. BioResources, 2012, 7, .	0.5	12
102	Hydrothermal Carbonization of Renewable Natural Plants as Superior Metal-Free Catalysts for Aerobic Oxidative Coupling of Amines to Imines. ACS Sustainable Chemistry and Engineering, 2020, 8, 11404-11412.	3.2	12
103	Ambient Pressure Inverse Ion Mobility Spectrometry Coupled to Mass Spectrometry. Analytical Chemistry, 2017, 89, 2800-2806.	3.2	11
104	Direct cyclohexanone oxime synthesis <i>via</i> oxidation–oximization of cyclohexane with ammonium acetate. Chemical Communications, 2020, 56, 1436-1439.	2.2	11
105	Efficient and Selective Oxidation of 5-Hydroxymethylfurfural into 2, 5-Diformylfuran Catalyzed by Magnetic Vanadium-Based Catalysts with Air as Oxidant. Catalysis Letters, 2020, 150, 1301-1308.	1.4	11
106	Titanium silicalite-1 supported bimetallic catalysts for selective hydrogenolysis of 5-hydroxymethylfurfural to biofuel 2, 5-dimethylfuran. Chemical Engineering Journal Advances, 2021, 5, 100081.	2.4	11
107	A simple and efficient approach for synthesis of pseudoionone from citral and acetone catalyzed by powder LiOH·H2O. Catalysis Communications, 2009, 11, 236-239.	1.6	10
108	Preparation of Ag2SO3 based composites and their efficient degradation of rhodamine B under visible light irradiation. Materials Letters, 2012, 87, 58-61.	1.3	10

#	Article	IF	CITATIONS
109	MOLECULAR ACIDITY OF BUILDING BLOCKS OF BIOLOGICAL SYSTEMS: A DENSITY FUNCTIONAL REACTIVITY THEORY STUDY. Journal of Theoretical and Computational Chemistry, 2013, 12, 1350034.	1.8	10
110	New non-metallic mesoporous SBA-15 catalyst with high selectivity for the gas-phase oxidation of cyclohexylamine to cyclohexanone oxime. Catalysis Communications, 2014, 56, 148-152.	1.6	10
111	A highly-efficient and environmental-friendly method for the preparation of Mn(III)–Salen complexes encapsulated HMS by using microwave irradiation. Microporous and Mesoporous Materials, 2007, 106, 298-303.	2.2	9
112	Selective photosensitized oxidation and its catalytic regulation of monoterpene with molecular oxygen in different reaction media. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 217, 321-325.	2.0	9
113	Design, synthesis and biological evaluation of 1H-pyrazole-5-carboxamide derivatives as potential fungicidal and insecticidal agents. Chemical Papers, 2017, 71, 2053-2061.	1.0	9
114	Preparation and Characterization of Red Luminescent Ca0.8Zn0.2TiO3: Pr3+, Na+ Nanophosphor. Journal of Rare Earths, 2006, 24, 29-33.	2.5	8
115	Novel homogeneous Salen Mn(III) catalysts synthesized from dialdehyde or diketone with o-aminophenol for catalyzing epoxidation of alkenes. Catalysis Letters, 2007, 113, 155-159.	1.4	8
116	Allylic oxidation of \hat{l} ±-isophorone to keto-isophorone with molecular oxygen catalyzed by copper chloride in acetylacetone. Applied Catalysis A: General, 2014, 486, 193-200.	2.2	8
117	Consideration of roles of commercial TiO2 pigments in aromatic polyurethane coating via the photodegradation of dimethyl toluene-2,4-dicarbamate in non-aqueous solution. Research on Chemical Intermediates, 2015, 41, 7785-7797.	1.3	8
118	Graphene oxide supported chlorostannate (IV) ionic liquid: Brønsted-Lewis acidic combined catalyst for highly efficient Baeyer-Villiger oxidation in water. Molecular Catalysis, 2017, 433, 37-47.	1.0	8
119	Polymerization mechanism of 4-APN and a new catalyst for phthalonitrile resin polymerization. RSC Advances, 2020, 10, 39187-39194.	1.7	8
120	Ternary catalyst Mn-Fe-Ce/Al2O3 for the ozonation of phenol pollutant: performance and mechanism. Environmental Science and Pollution Research, 2021, 28, 32921-32932.	2.7	8
121	A Promising Coupled Process of Pd/l³-Al2O3–NH4VO3 Catalyzing the Hydroxylation of Benzene with Hydrogen Peroxide Produced InÂSitu by an Anthraquinone Redox Route. Catalysis Letters, 2007, 118, 270-274.	1.4	7
122	Efficient Oxidation of Glucose into Sodium Gluconate Catalyzed by Hydroxyapatite Supported Au Catalyst. Catalysis Letters, 2017, 147, 383-390.	1.4	7
123	HCl and O ₂ co-activated bis(8-quinolinolato) oxovanadium(<scp>iv</scp>) complexes as efficient photoactive species for visible light-driven oxidation of cyclohexane to KA oil. Catalysis Science and Technology, 2019, 9, 275-285.	2.1	7
124	Efficient adsorption removal of Cd ²⁺ from aqueous solutions by HNO3 modified bamboo-derived biochar. IOP Conference Series: Materials Science and Engineering, 2020, 729, 012081.	0.3	7
125	Visibleâ€Lightâ€Triggered Quantitative Oxidation of 9,10â€Dihydroanthracene to Anthraquinone by O ₂ under Mild Conditions. ChemSusChem, 2020, 13, 1785-1792.	3.6	7
126	Site-specific catalytic activities to facilitate solvent-free aerobic oxidation of cyclohexylamine to cyclohexanone oxime over highly efficient Nb-modified SBA-15 catalysts. Catalysis Science and Technology, 2020, 10, 3409-3422.	2.1	7

#	Article	IF	CITATIONS
127	Immobilization of Mn(salen) complex on aluminum-containing mesoporous materials by microwave heating for epoxidation of styrene. Studies in Surface Science and Catalysis, 2005, 156, 851-858.	1.5	6
128	New catalysts for diels-alder reaction of myrcene and acrolein prepared by solid-state interaction, of MCM-41 silica and ZnCl2. Studies in Surface Science and Catalysis, 2005, , 815-822.	1.5	6
129	Highly efficient light-driven HNO3 nitration–oxidation of cyclohexane to co-product nitrocyclohexane and adipic acid in a biphasic system. Research on Chemical Intermediates, 2016, 42, 461-470.	1.3	6
130	Imidazolyl activated carbon refluxed with ethanediamine as reusable heterogeneous catalysts for Michael addition. RSC Advances, 2019, 9, 185-191.	1.7	6
131	Catalytic Transfer Hydrogenation of Ethyl Levulinate to γ-Valerolactone Over Ni Supported on Equilibrium Fluid-Catalytic-Cracking Catalysts. Catalysis Letters, 2021, 151, 538-547.	1.4	6
132	Assemblies of Ti Active Sites Over HMS Supports Containing Surface's OH or NH2Groups. Catalysis Letters, 2003, 90, 205-212.	1.4	5
133	Molecular dynamics simulations of the aggregation of nanocolloidal amorphous silica monomers and dimers. Procedia Engineering, 2011, 18, 188-193.	1.2	5
134	Synthesis and Herbicidal Activity of Novel <i>N</i> >i>Nà€(2â€Fluoroâ€5(3â€methylâ€2,6â€dioxoâ€4â€(trifluoromethyl)â€2,3â€dihydroâ€pyrimidinâ€1(6 <i>Derivatives. Chinese Journal of Chemistry, 2011, 29, 2401-2406.</i>	H <b i₂.)îâ€yl)ph e nyl)â€ 2 â€
135	Selective and Cleavable Extraction of Sialo-glycoproteins by Disulfide-Linked Amino-oxy-Functionalized Fe3O4 Magnetic Nanoparticles. Bioconjugate Chemistry, 2017, 28, 2514-2517.	1.8	5
136	lonic liquid-assisted catalytic oxidation of anethole by copper- and iron-based metal-organic frameworks. Molecular Catalysis, 2017, 440, 158-167.	1.0	5
137	Facile access to nitroalkanes: Nitration of alkanes by selective C H nitration using metal nitrate, catalyzed by in-situ generated metal oxide. Catalysis Communications, 2020, 142, 106035.	1.6	5
138	Hydroxyl-assisted selective epoxidation of perillyl alcohol with hydrogen peroxide by vanadium-substituted phosphotungstic acid hinged on imidazolyl activated carbon. New Journal of Chemistry, 2022, 46, 6636-6645.	1.4	5
139	Catalytic Oxidative Removal of Dimethylsulfoxide by Hexadentate 8-Quinolinolato Manganese(III) Complexes. Chinese Journal of Catalysis, 2009, 30, 981-985.	6.9	4
140	Novel \hat{l}_{\pm} -ketoesters from \hat{l}^2 -diketones via a vanadium-mediated tandem transformation under an oxygen atmosphere. Catalysis Communications, 2013, 37, 109-113.	1.6	4
141	Highly efficient and recyclable alkylammonium hydrosulfate catalyst for formation of bisphenol F by condensation of phenol with formaldehyde. RSC Advances, 2016, 6, 92716-92722.	1.7	4
142	Phosphorus-Doped Carbon Supported Vanadium Phosphate Oxides for Catalytic Oxidation of 5-Hydroxymethylfurfural to 2,5-Diformylfuran. Processes, 2020, 8, 1273.	1.3	4
143	Imidazolized Activated Carbon Anchoring Phosphotungstic Acid as a Recyclable Catalyst for Oxidation of Alcohols With Aqueous Hydrogen Peroxide. Frontiers in Chemistry, 0, 10, .	1.8	4
144	Quantum topological resolution of catalyst proficiency. International Journal of Quantum Chemistry, 2015, 115, 875-883.	1.0	3

#	Article	IF	CITATIONS
145	Reuse of waste catalytic-cracking catalyst: fine performance in acetalization. Journal of Material Cycles and Waste Management, 2020, 22, 22-29.	1.6	3
146	lonic liquid-mediated catalytic oxidation of \hat{l}^2 -caryophyllene by ultrathin 2D metal-organic framework nanosheets under 1 atm O2. Molecular Catalysis, 2020, 496, 111196.	1.0	3
147	Probe Reactions Catalyzed by Surface Acid Sites of HTS-1. Chinese Journal of Catalysis, 2010, 31, 72-77.	6.9	3
148	Sulfuric Acid Immobilized on Activated Carbon Aminated with Ethylenediamine: An Efficient Reusable Catalyst for the Synthesis of Acetals (Ketals). Nanomaterials, 2022, 12, 1462.	1.9	3
149	Direct liquid phase hydroxylation of benzene with an inner-circulated H2-O2 mixture over Pd or Pd-V modified $H\hat{l}^2$ catalysts at ambient conditions. Studies in Surface Science and Catalysis, 2007, , 1399-1404.	1.5	2
150	Carboxymethyl chitosanâ€assisted uniformly anchored Pd nanoparticles on carbon nanotubes for methanol electrooxidation in alkaline media. Micro and Nano Letters, 2015, 10, 119-121.	0.6	2
151	Selective Catalytic Isomerization of $\hat{I}^2 \hat{a} \in P$ inene Oxide to Perillyl Alcohol Enhanced by Protic Tetraimidazolium Nitrate. ChemistryOpen, 2021, 10, 477-485.	0.9	2
152	$(\hat{l}\pm\text{-Fe2O3})1\text{-}(V2O5)$ catalysts with enhanced acid-base property for the highly active and ortho-selective methylation of phenol. Molecular Catalysis, 2021, 515, 111857.	1.0	2
153	Synthesis of <i>α</i> -Amino Phosphonates from One-Pot Three- Component Condensation Catalyzed by Bamboo Char Sulfonic Acid. Chinese Journal of Organic Chemistry, 2012, 32, 393.	0.6	2
154	Knoevenagel Condensation Catalyzed by Immobilized Ionic Liquids-Proline on SBA-15. Chinese Journal of Catalysis, 2010, 31, 827-832.	6.9	2
155	Self-assembled Solvent-regulated Phase Transfer Catalyst for Epoxidation of Non-functionalized Alkenes. Catalysis Letters, 2009, 129, 471-477.	1.4	1
156	Catalytic Modulation on the Regioselectivity of the Photosensitized Oxidation of α-Pinene with Molecular Oxygen under Sodium Lamp Irradiation. Chinese Journal of Catalysis, 2011, 32, 1610-1616.	6.9	1
157	Facilely constructing robust nanohybrids comprising high dispersion of platinum–ruthenium nanoparticles on carbon nanotubes and their enhanced electrocatalytic performance. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 2532-2538.	0.8	1
158	Nano-Silica@PVC-Bonded $\langle i \rangle N \langle i \rangle$ -Ethyl Sulfamic Acid as a Recyclable Solid Catalyst for the Hydroxyalkylation of Phenol with Formaldehyde to Bisphenol F. Bulletin of the Chemical Society of Japan, 2019, 92, 1394-1403.	2.0	1
159	Titania Nanotubes-Bonded Sulfamic Acid as an Efficient Heterogeneous Catalyst for the Synthesis of n-Butyl Levulinate. Frontiers in Chemistry, 2022, 10, 894965.	1.8	1
160	Ionic liquid-modulated aerobic oxidation of isoeugenol and \hat{l}^2 -caryophyllene via nanoscale Cu-MOFs under mild conditions. Molecular Catalysis, 2022, 528, 112416.	1.0	1
161	An ultrathin amino-acid based copper(II) coordination polymer nanosheet for efficient epoxidation of \hat{l}^2 -caryophyllene. Molecular Catalysis, 2021, 511, 111754.	1.0	0
162	Zirconia and Phosphotungstic Acid Supported on TS-1 as An Active Catalyst for One-Pot Selective Conversion of Furfuryl Alcohol to $\langle i \rangle \hat{I}^3 \langle i \rangle$ -Valerolactone. Science of Advanced Materials, 2021, 13, 1078-1087.	0.1	0

#	Article	IF	CITATIONS
163	Production of the 2,5-Furandicarboxylic Acid Bio-Monomer From 5-Hydroxymethylfurfural Over a Molybdenum-Vanadium Oxide Catalyst. Frontiers in Chemistry, 2022, 10, 853112.	1.8	O