

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5033697/publications.pdf Version: 2024-02-01

ΟΝΑ λλ/Π

#	Article	IF	CITATIONS
1	Tracer arrival timing-insensitive technique for estimating flow in MR perfusion-weighted imaging using singular value decomposition with a block-circulant deconvolution matrix. Magnetic Resonance in Medicine, 2003, 50, 164-174.	1.9	528
2	DWI-FLAIR mismatch for the identification of patients with acute ischaemic stroke within 4·5 h of symptom onset (PRE-FLAIR): a multicentre observational study. Lancet Neurology, The, 2011, 10, 978-986.	4.9	468
3	Neuroanatomic Connectivity of the Human Ascending Arousal System Critical to Consciousness and Its Disorders. Journal of Neuropathology and Experimental Neurology, 2012, 71, 531-546.	0.9	353
4	Diffusion tensor imaging as potential biomarker of white matter injury in diffuse axonal injury. American Journal of Neuroradiology, 2004, 25, 370-6.	1.2	327
5	Human Acute Cerebral Ischemia: Detection of Changes in Water Diffusion Anisotropy by Using MR Imaging. Radiology, 1999, 212, 785-792.	3.6	289
6	Correlation between Brain Reorganization, Ischemic Damage, and Neurologic Status after Transient Focal Cerebral Ischemia in Rats: A Functional Magnetic Resonance Imaging Study. Journal of Neuroscience, 2003, 23, 510-517.	1.7	283
7	Predicting Tissue Outcome in Acute Human Cerebral Ischemia Using Combined Diffusion- and Perfusion-Weighted MR Imaging. Stroke, 2001, 32, 933-942.	1.0	266
8	Early detection of consciousness in patients with acute severe traumatic brain injury. Brain, 2017, 140, 2399-2414.	3.7	244
9	Loci associated with ischaemic stroke and its subtypes (SiGN): a genome-wide association study. Lancet Neurology, The, 2016, 15, 174-184.	4.9	217
10	Acute Stroke Imaging Research Roadmap II. Stroke, 2013, 44, 2628-2639.	1.0	192
11	Comatose Patients with Cardiac Arrest: Predicting Clinical Outcome with Diffusion-weighted MR Imaging. Radiology, 2009, 252, 173-181.	3.6	166
12	Prognostication of neurologic outcome in cardiac arrest patients after mild therapeutic hypothermia: a meta-analysis of the current literature. Intensive Care Medicine, 2013, 39, 1671-1682.	3.9	160
13	Severity of Leukoaraiosis and Susceptibility to Infarct Growth in Acute Stroke. Stroke, 2008, 39, 1409-1413.	1.0	155
14	lschemic injury detected by diffusion imaging 11 minutes after stroke. Annals of Neurology, 2005, 58, 462-465.	2.8	133
15	Brain Edema Predicts Outcome After Nonlacunar Ischemic Stroke. Stroke, 2014, 45, 3643-3648.	1.0	130
16	Comparison of 10 Perfusion MRI Parameters in 97 Sub-6-Hour Stroke Patients Using Voxel-Based Receiver Operating Characteristics Analysis. Stroke, 2009, 40, 2055-2061.	1.0	128
17	Magnetic Resonance Perfusion-Weighted Imaging of Acute Cerebral Infarction. Stroke, 2002, 33, 87-94.	1.0	126
18	Role of Acute Lesion Topography in Initial Ischemic Stroke Severity and Long-Term Functional Outcomes. Stroke, 2015, 46, 2438-2444.	1.0	126

#	Article	IF	CITATIONS
19	Frequency and Clinical Context of Decreased Apparent Diffusion Coefficient Reversal in the Human Brain. Radiology, 2001, 221, 43-50.	3.6	121
20	Disconnection of the Ascending Arousal System in Traumatic Coma. Journal of Neuropathology and Experimental Neurology, 2013, 72, 505-523.	0.9	118
21	MR Perfusion Imaging in Acute Ischemic Stroke. Neuroimaging Clinics of North America, 2011, 21, 259-283.	0.5	115
22	Transient ischemic attack with infarction: A unique syndrome?. Annals of Neurology, 2005, 57, 679-686.	2.8	114
23	Ischemic Stroke: Effects of Etiology and Patient Age on the Time Course of the Core Apparent Diffusion Coefficient. Radiology, 2001, 221, 27-34.	3.6	110
24	Intravenous thrombolysis in unwitnessed stroke onset: MR WITNESS trial results. Annals of Neurology, 2018, 83, 980-993.	2.8	110
25	A human memory circuit derived from brain lesions causing amnesia. Nature Communications, 2019, 10, 3497.	5.8	108
26	Intravenous alteplase for stroke with unknown time of onset guided by advanced imaging: systematic review and meta-analysis of individual patient data. Lancet, The, 2020, 396, 1574-1584.	6.3	107
27	MRI Detection of Early Blood-Brain Barrier Disruption. Stroke, 2008, 39, 1025-1028.	1.0	106
28	Frontal connections and cognitive changes in normal aging rhesus monkeys: A DTI study. Neurobiology of Aging, 2007, 28, 1556-1567.	1.5	105
29	Functional networks reemerge during recovery ofÂconsciousness after acute severe traumatic brainÂinjury. Cortex, 2018, 106, 299-308.	1.1	101
30	Highly diffusion-sensitized MRI of brain: Dissociation of gray and white matter. Magnetic Resonance in Medicine, 2001, 45, 734-740.	1.9	99
31	Rapid Breakdown of Microvascular Barriers and Subsequent Hemorrhagic Transformation After Delayed Recombinant Tissue Plasminogen Activator Treatment in a Rat Embolic Stroke Model. Stroke, 2002, 33, 2100-2104.	1.0	97
32	Predicting Clinical Outcome in Comatose Cardiac Arrest Patients Using Early Noncontrast Computed Tomography. Stroke, 2011, 42, 985-992.	1.0	96
33	Existence of the Diffusion-Perfusion Mismatch within 24 Hours after Onset of Acute Stroke: Dependence on Proximal Arterial Occlusion. Radiology, 2009, 250, 878-886.	3.6	94
34	Effects of tracer arrival time on flow estimates in MR perfusion-weighted imaging. Magnetic Resonance in Medicine, 2003, 50, 856-864.	1.9	93
35	Acute Stroke Imaging Research Roadmap III Imaging Selection and Outcomes in Acute Stroke Reperfusion Clinical Trials. Stroke, 2016, 47, 1389-1398.	1.0	88
36	Combined Diffusion-Weighted and Perfusion-Weighted Flow Heterogeneity Magnetic Resonance Imaging in Acute Stroke. Stroke, 2000, 31, 1097-1103.	1.0	83

#	Article	IF	CITATIONS
37	Neuroprognostication of hypoxic–ischaemic coma in the therapeutic hypothermia era. Nature Reviews Neurology, 2014, 10, 190-203.	4.9	81
38	Lesions causing hallucinations localize to one common brain network. Molecular Psychiatry, 2021, 26, 1299-1309.	4.1	74
39	Glyburide is Associated with Attenuated Vasogenic Edema in Stroke Patients. Neurocritical Care, 2014, 20, 193-201.	1.2	73
40	Characterizing physiological heterogeneity of infarction risk in acute human ischaemic stroke using MRI. Brain, 2006, 129, 2384-2393.	3.7	71
41	Clinical examination for prognostication in comatose cardiac arrest patients. Resuscitation, 2013, 84, 1546-1551.	1.3	68
42	Stroke Genetics Network (SiGN) Study. Stroke, 2013, 44, 2694-2702.	1.0	62
43	Hyperintense Vessels on Acute Stroke Fluid-Attenuated Inversion Recovery Imaging. Stroke, 2012, 43, 2957-2961.	1.0	59
44	Delayed rt-PA Treatment in a Rat Embolic Stroke Model: Diagnosis and Prognosis of Ischemic Injury and Hemorrhagic Transformation with Magnetic Resonance Imaging. Journal of Cerebral Blood Flow and Metabolism, 2001, 21, 964-971.	2.4	58
45	Changes in neuronal connectivity after stroke in rats as studied by serial manganese-enhanced MRI. Neurolmage, 2007, 34, 1650-1657.	2.1	57
46	In vivo 1H magnetic resonance spectroscopy, T2-weighted and diffusion-weighted MRI during lithium–pilocarpine-induced status epilepticus in the rat. Brain Research, 2004, 1030, 11-18.	1.1	56
47	Diffusion tensor imaging in acute-to-subacute traumatic brain injury: a longitudinal analysis. BMC Neurology, 2016, 16, 2.	0.8	55
48	Identifying therapeutic targets from spontaneous beneficial brain lesions. Annals of Neurology, 2018, 84, 153-157.	2.8	55
49	Interexaminer Difference in Infarct Volume Measurements on MRI. Stroke, 2008, 39, 1171-1176.	1.0	53
50	Revisiting Grade 3 Diffuse Axonal Injury: Not All Brainstem Microbleeds are Prognostically Equal. Neurocritical Care, 2017, 27, 199-207.	1.2	53
51	Big Data Approaches to Phenotyping Acute Ischemic Stroke Using Automated Lesion Segmentation of Multi-Center Magnetic Resonance Imaging Data. Stroke, 2019, 50, 1734-1741.	1.0	52
52	Infarct Prediction and Treatment Assessment with MRI-based Algorithms in Experimental Stroke Models. Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 196-204.	2.4	51
53	Diffuse microvascular dysfunction and loss of white matter integrity predict poor outcomes in patients with acute ischemic stroke. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 75-86.	2.4	51
54	Model of the human vasculature for studying the influence of contrast injection speed on cerebral perfusion MRI. Magnetic Resonance in Medicine, 2003, 50, 614-622.	1.9	50

#	Article	lF	CITATIONS
55	Manganese-Enhanced MRI of Brain Plasticity in Relation to Functional Recovery after Experimental Stroke. Journal of Cerebral Blood Flow and Metabolism, 2008, 28, 832-840.	2.4	50
56	International Survey of Acute Stroke Imaging Used to Make Revascularization Treatment Decisions. International Journal of Stroke, 2015, 10, 759-762.	2.9	50
57	Outcome after acute ischemic stroke is linked to sex-specific lesion patterns. Nature Communications, 2021, 12, 3289.	5.8	50
58	Disruption of the ascending arousal network in acute traumatic disorders of consciousness. Neurology, 2019, 93, e1281-e1287.	1.5	49
59	In patients with suspected acute stroke, CT perfusion-based cerebral blood flow maps cannot substitute for DWI in measuring the ischemic core. PLoS ONE, 2017, 12, e0188891.	1.1	48
60	Consensus statement on current and emerging methods for the diagnosis and evaluation of cerebrovascular disease. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 1391-1417.	2.4	48
61	White matter hyperintensity quantification in large-scale clinical acute ischemic stroke cohorts – The MRI-GENIE study. NeuroImage: Clinical, 2019, 23, 101884.	1.4	48
62	Integrity of normal-appearing white matter and functional outcomes after acute ischemic stroke. Neurology, 2017, 88, 1701-1708.	1.5	47
63	Quantitative Measurements of Relative Fluid-Attenuated Inversion Recovery (FLAIR) Signal Intensities in Acute Stroke for the Prediction of Time from Symptom Onset. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 76-84.	2.4	46
64	Evolution of water diffusion and anisotropy in hyperacute stroke: significant correlation between fractional anisotropy and T2. American Journal of Neuroradiology, 2004, 25, 699-705.	1.2	45
65	A Pragmatic Approach Using Magnetic Resonance Imaging to Treat Ischemic Strokes of Unknown Onset Time in a Thrombolytic Trial. Stroke, 2012, 43, 2331-2335.	1.0	43
66	Inferring origin of vascular supply from tracer arrival timing patterns using bolus tracking MRI. Journal of Magnetic Resonance Imaging, 2008, 27, 1371-1381.	1.9	42
67	Mapping mania symptoms based on focal brain damage. Journal of Clinical Investigation, 2020, 130, 5209-5222.	3.9	42
68	Lower Hemoglobin Correlates with Larger Stroke Volumes in Acute Ischemic Stroke. Cerebrovascular Diseases Extra, 2011, 1, 44-53.	0.5	41
69	Hippocampal Magnetic Resonance Imaging Abnormalities in Cardiac Arrest are Associated with Poor Outcome. Journal of Stroke and Cerebrovascular Diseases, 2013, 22, 899-905.	0.7	41
70	Early Identification of Potentially Salvageable Tissue with MRI-Based Predictive Algorithms after Experimental Ischemic Stroke. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 1075-1082.	2.4	41
71	Ensemble of Convolutional Neural Networks Improves Automated Segmentation of Acute Ischemic Lesions Using Multiparametric Diffusion-Weighted MRI. American Journal of Neuroradiology, 2019, 40, 938-945.	1.2	41
72	Abnormal dynamic functional connectivity is linked to recovery after acute ischemic stroke. Human Brain Mapping, 2021, 42, 2278-2291.	1.9	40

#	Article	lF	CITATIONS
73	Technical Aspects of Perfusion-Weighted Imaging. Neuroimaging Clinics of North America, 2005, 15, 623-637.	0.5	39
74	Repeatability of Cerebral Perfusion Using Dynamic Susceptibility Contrast MRI in Glioblastoma Patients. Translational Oncology, 2015, 8, 137-146.	1.7	38
75	Recent Advances in Leukoaraiosis: White Matter Structural Integrity and Functional Outcomes after Acute Ischemic Stroke. Current Cardiology Reports, 2016, 18, 123.	1.3	38
76	Unexpected Recovery of Function After Severe Traumatic Brain Injury: The Limits of Early Neuroimaging-Based Outcome Prediction. Neurocritical Care, 2013, 19, 364-375.	1.2	37
77	Validity of Acute Stroke Lesion Volume Estimation by Diffusion-Weighted Imaging–Alberta Stroke Program Early Computed Tomographic Score Depends on Lesion Location in 496 Patients With Middle Cerebral Artery Stroke. Stroke, 2014, 45, 3583-3588.	1.0	36
78	Oxidative Stress Biomarkers of Brain Damage. Stroke, 2018, 49, 630-637.	1.0	36
79	Early molecular oxidative stress biomarkers of ischemic penumbra in acute stroke. Neurology, 2019, 93, e1288-e1298.	1.5	36
80	White Matter Integrity and Early Outcomes After Acute Ischemic Stroke. Translational Stroke Research, 2019, 10, 630-638.	2.3	36
81	Design and rationale for examining neuroimaging genetics in ischemic stroke. Neurology: Genetics, 2017, 3, e180.	0.9	35
82	In Acute Stroke, Can CT Perfusion-Derived Cerebral Blood Volume Maps Substitute for Diffusion-Weighted Imaging in Identifying the Ischemic Core?. PLoS ONE, 2015, 10, e0133566.	1.1	34
83	White matter hyperintensity burden in acute stroke patients differs by ischemic stroke subtype. Neurology, 2020, 95, e79-e88.	1.5	34
84	Clinical examination for outcome prediction in nontraumatic coma*. Critical Care Medicine, 2012, 40, 1150-1156.	0.4	33
85	Functional MRI and Outcome in Traumatic Coma. Current Neurology and Neuroscience Reports, 2013, 13, 375.	2.0	33
86	Spatial Signature of White Matter Hyperintensities in Stroke Patients. Frontiers in Neurology, 2019, 10, 208.	1.1	33
87	Multimodal Characterization of the Late Effects of Traumatic Brain Injury: A Methodological Overview of the Late Effects of Traumatic Brain Injury Project. Journal of Neurotrauma, 2018, 35, 1604-1619.	1.7	32
88	Applying instance-based techniques to prediction of final outcome in acute stroke. Artificial Intelligence in Medicine, 2005, 33, 223-236.	3.8	30
89	Infarct topography and functional outcomes. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 1517-1532.	2.4	30
90	White Matter Abnormalities and Structural Hippocampal Disconnections in Amnestic Mild Cognitive Impairment and Alzheimer's Disease. PLoS ONE, 2013, 8, e74776.	1.1	28

#	Article	lF	CITATIONS
91	Advanced Neuroimaging in Traumatic Brain Injury. Seminars in Neurology, 2013, 32, 374-400.	0.5	27
92	Cerebral perfusion changes in migraineurs: a voxelwise comparison of interictal dynamic susceptibility contrast MRI measurements. Cephalalgia, 2012, 32, 279-288.	1.8	26
93	Perfusion MRI in neuroâ€psychiatric systemic lupus erthemathosus. Journal of Magnetic Resonance Imaging, 2010, 32, 283-288.	1.9	25
94	Multi-atlas image registration of clinical data with automated quality assessment using ventricle segmentation. Medical Image Analysis, 2020, 63, 101698.	7.0	25
95	Age-Dependent Susceptibility to Infarct Growth in Women. Stroke, 2011, 42, 947-951.	1.0	24
96	Neuroimaging Paradigms to Identify Patients for Reperfusion Therapy in Stroke of Unknown Onset. Frontiers in Neurology, 2018, 9, 327.	1.1	24
97	Brain Connectivity Measures Improve Modeling of Functional Outcome After Acute Ischemic Stroke. Stroke, 2019, 50, 2761-2767.	1.0	24
98	Stroke Treatment Academic Industry Roundtable. Stroke, 2013, 44, 3596-3601.	1.0	23
99	Rich-Club Organization: An Important Determinant of Functional Outcome After Acute Ischemic Stroke. Frontiers in Neurology, 2019, 10, 956.	1.1	23
100	Neuroimaging in Cardiac Arrest Prognostication. Seminars in Neurology, 2017, 37, 066-074.	0.5	22
101	Evaluating effects of normobaric oxygen therapy in acute stroke with MRI-based predictive models. Medical Gas Research, 2012, 2, 5.	1.2	21
102	Imaging Stroke Patients with Unclear Onset Times. Neuroimaging Clinics of North America, 2011, 21, 327-344.	0.5	20
103	Reliability of cerebral blood volume maps as a substitute for diffusionâ€weighted imaging in acute ischemic stroke. Journal of Magnetic Resonance Imaging, 2012, 36, 1083-1087.	1.9	19
104	Brain Volume: An Important Determinant of Functional Outcome After Acute Ischemic Stroke. Mayo Clinic Proceedings, 2020, 95, 955-965.	1.4	18
105	Multiparametric Magnetic Resonance Imaging of Brain Disorders. Topics in Magnetic Resonance Imaging, 2010, 21, 129-138.	0.7	16
106	Quantification and Analysis of Large Multimodal Clinical Image Studies: Application to Stroke. Lecture Notes in Computer Science, 2013, 8159, 18-30.	1.0	15
107	Dynamic Functional Cerebral Blood Volume Responses to Normobaric Hyperoxia in Acute Ischemic Stroke. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 1800-1809.	2.4	14
108	Longitudinal Diffusion Tensor Imaging Detects Recovery of Fractional Anisotropy Within Traumatic Axonal Injury Lesions. Neurocritical Care, 2016, 24, 342-352.	1.2	14

#	Article	IF	CITATIONS
109	Structural Integrity of Normal Appearing White Matter and Sex-Specific Outcomes After Acute Ischemic Stroke. Stroke, 2017, 48, 3387-3389.	1.0	14
110	Segmentation of Cerebrovascular Pathologies in Stroke Patients with Spatial and Shape Priors. Lecture Notes in Computer Science, 2014, 17, 773-780.	1.0	14
111	Identifying Severe Stroke Patients Likely to Benefit From Thrombectomy Despite Delays of up to a Day. Scientific Reports, 2020, 10, 4008.	1.6	13
112	MRI Radiomic Signature of White Matter Hyperintensities Is Associated With Clinical Phenotypes. Frontiers in Neuroscience, 2021, 15, 691244.	1.4	12
113	Predicting neurological outcome in comatose patients after cardiac arrest with multiscale deep neural networks. Resuscitation, 2021, 169, 86-94.	1.3	12
114	Excessive White Matter Hyperintensity Increases Susceptibility to Poor Functional Outcomes After Acute Ischemic Stroke. Frontiers in Neurology, 2021, 12, 700616.	1.1	11
115	Effective Reserve: A Latent Variable to Improve Outcome Prediction in Stroke. Journal of Stroke and Cerebrovascular Diseases, 2019, 28, 63-69.	0.7	10
116	Perfusion magnetic resonance imaging of acute ischemic stroke. Seminars in Roentgenology, 2002, 37, 230-236.	0.2	9
117	Sex-specific differences in white matter microvascular integrity after ischaemic stroke. Stroke and Vascular Neurology, 2019, 4, 198-205.	1.5	9
118	Traumatic Microbleeds in the Hippocampus and Corpus Callosum Predict Duration of Posttraumatic Amnesia. Journal of Head Trauma Rehabilitation, 2019, 34, E10-E18.	1.0	9
119	Adapting Clinical Practice of Thrombolysis for Acute Ischemic Stroke Beyond 4.5 Hours: A Review of the Literature. Journal of Stroke and Cerebrovascular Diseases, 2021, 30, 106059.	0.7	8
120	Sex-specific lesion pattern of functional outcomes after stroke. Brain Communications, 2022, 4, fcac020.	1.5	8
121	Early time points perfusion imaging. NeuroImage, 2011, 54, 1070-1082.	2.1	7
122	Prediction of hemorrhagic transformation after experimental ischemic stroke using MRI-based algorithms. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 3065-3076.	2.4	7
123	White Matter Hyperintensity Burden Is Associated With Hippocampal Subfield Volume in Stroke. Frontiers in Neurology, 2020, 11, 588883.	1.1	6
124	Fetal posterior cerebral artery configurations in an ischemic stroke versus an unselected hospital population. Acta Neurologica Scandinavica, 2022, 145, 297-304.	1.0	6
125	International Survey of Acute Stroke Imaging Capabilities. Stroke, 2013, 44, 2091-2091.	1.0	5
126	Default Mode Network Perfusion in Aneurysmal Subarachnoid Hemorrhage. Neurocritical Care, 2016, 25, 237-242.	1.2	5

#	Article	IF	CITATIONS
127	Diffusion-Weighted Imaging, MR Angiography, and Baseline Data in a Systematic Multicenter Analysis of 3,301 MRI Scans of Ischemic Stroke Patients—Neuroradiological Review Within the MRI-GENIE Study. Frontiers in Neurology, 2020, 11, 577.	1.1	5
128	Diffusion magnetic resonance imaging of acute ischemic stroke. Seminars in Roentgenology, 2002, 37, 219-229.	0.2	4
129	Reduced Ischemic Lesion Growth with Heparin in Acute Ischemic Stroke. Journal of Stroke and Cerebrovascular Diseases, 2019, 28, 1500-1508.	0.7	4
130	Novel Imaging Markers of Ischemic Cerebral Edema and Its Association with Neurological Outcome. Acta Neurochirurgica Supplementum, 2016, 121, 223-226.	0.5	4
131	Early time points perfusion imaging: Relative time of arrival, maximum derivatives and fractional derivatives. NeuroImage, 2011, 57, 979-990.	2.1	3
132	Magnetic resonance imaging-based cerebral tissue classification reveals distinct spatiotemporal patterns of changes after stroke in non-human primates. BMC Neuroscience, 2015, 16, 91.	0.8	3
133	Impact of Lesion Load Thresholds on Alberta Stroke Program Early Computed Tomographic Score in Diffusion-Weighted Imaging. Frontiers in Neurology, 2018, 9, 273.	1.1	2
134	Normal-appearing white matter microstructural injury is associated with white matter hyperintensity burden in acute ischemic stroke. International Journal of Stroke, 2021, 16, 184-191.	2.9	2
135	Diffusion in Acute Stroke. , 2010, , 518-528.		2
136	Severe Cerebral Edema in Substance-Related Cardiac Arrest Patients. Resuscitation, 2022, , .	1.3	2
137	Beyond Lesion Volumes: Network-based Approach for the Investigation of Neurocognitive Deficits in Patients with Chronic Subcortical Strokes. Radiology, 2018, 288, 195-197.	3.6	1
138	Abstract 3319: Prediction Of Lesion Expansion In Stroke Patients Using Acute MRI. Stroke, 2012, 43, .	1.0	1
139	Abstract WP54: Early Alterations in Neurite Orientation Dispersion and Density After Acute Ischemic Stroke, 2018, 49, .	1.0	1
140	Global white matter structural integrity mediates the effect of age on ischemic stroke outcomes. International Journal of Stroke, 2021, , 174749302110559.	2.9	1
141	Transient ischemic attack with infarction: A unique syndrome?. International Congress Series, 2006, 1290, 45-55.	0.2	0
142	Response to De Jonghe et al.: Prognostication of neurological outcome after cardiac arrest: standardization of neurological examination conditions is needed. Intensive Care Medicine, 2014, 40, 295-295.	3.9	0
143	Spatio-temporal patterns of MRI-detected manganese-enhancement in the sensorimotor network of rat brain after stroke. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S240-S240.	2.4	0
144	Spatio-temporal dynamics of infarct evolution using MR-based prediction algorithms. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S538-S538.	2.4	0

#	Article	IF	CITATIONS
145	Predicting effects of thrombolytic therapy in acute stroke patients using MR imaging. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S113-S113.	2.4	0
146	Abstract WP204: Genetic Variant in VCAM1 Mediates Acute Infarct Size in Ischemic Stroke Patients. Stroke, 2017, 48, .	1.0	0
147	Abstract 136: Genetics of White Matter Hyperintensity Burden in Patients With Ischemic Stroke: The MRI-GENIE Study. Stroke, 2017, 48, .	1.0	0
148	Abstract TP50: Blood Brain Barrier Leakage Rates and Ischemic Tissue Outcomes in Patients With Advanced White Matter Disease. Stroke, 2018, 49, .	1.0	0
149	Abstract TP52: Neurite Density and Orientation Dispersion are Decreased in White Matter in Patients With Advanced Leukoariaosis. Stroke, 2018, 49, .	1.0	0
150	Abstract WMP16: Elevated Cerebral Neurite Orientation Dispersion and Density Imaging and Diffusion Kurtosis Values Are Associated With Poor Neurologic Outcome in Comatose Cardiac Arrest Patients. Stroke, 2018, 49, .	1.0	0
151	Abstract WP318: Reduced Infarct Growth With IV Heparin in Acute Ischemic Stroke. Stroke, 2018, 49, .	1.0	0
152	L'âge cérébral radiomique prédit le pronostic fonctionnel après un avc ischémique Journal of Neuroradiology, 2022, 49, 110-111.	0.6	0