Haw Yen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5033672/publications.pdf

Version: 2024-02-01

289141 304602 1,915 76 22 40 citations h-index g-index papers 86 86 86 2046 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Hydrological Processes and Model Representation: Impact of Soft Data on Calibration. Transactions of the ASABE, 2015, 58, 1637-1660.	1.1	130
2	A framework for propagation of uncertainty contributed by parameterization, input data, model structure, and calibration/validation data in watershed modeling. Environmental Modelling and Software, 2014, 54, 211-221.	1.9	124
3	Multiple models guide strategies for agricultural nutrient reductions. Frontiers in Ecology and the Environment, 2017, 15, 126-132.	1.9	118
4	Impact of model development, calibration and validation decisions on hydrological simulations in West Lake Erie Basin. Hydrological Processes, 2015, 29, 5307-5320.	1.1	111
5	A review of pesticide fate and transport simulation at watershed level using SWAT: Current status and research concerns. Science of the Total Environment, 2019, 669, 512-526.	3.9	105
6	Evaluation of CFSR, TMPA 3B42 and ground-based rainfall data as input for hydrological models, in data-scarce regions: The upper Blue Nile Basin, Ethiopia. Catena, 2017, 152, 242-251.	2.2	60
7	CN-China: Revised runoff curve number by using rainfall-runoff events data in China. Water Research, 2020, 177, 115767.	5. 3	57
8	The Role of Interior Watershed Processes in Improving Parameter Estimation and Performance of Watershed Models. Journal of Environmental Quality, 2014, 43, 1601-1613.	1.0	54
9	Evaluating hydrologic responses to soil characteristics using SWAT model in a paired-watersheds in the Upper Blue Nile Basin. Catena, 2018, 163, 332-341.	2.2	53
10	Potential impacts of land use/cover and climate changes on ecologically relevant flows. Journal of Hydrology, 2020, 584, 124654.	2.3	52
11	Development of reservoir operation functions in SWAT+ for national environmental assessments. Journal of Hydrology, 2020, 583, 124556.	2.3	51
12	Western Lake Erie Basin: Soft-data-constrained, NHDPlus resolution watershed modeling and exploration of applicable conservation scenarios. Science of the Total Environment, 2016, 569-570, 1265-1281.	3.9	46
13	An innovative approach to identifying agricultural pollution sources and loads by using nutrient export coefficients in watershed modeling. Journal of Hydrology, 2019, 571, 322-331.	2.3	44
14	A synthesis and comparative evaluation of factors influencing the effectiveness of drainage water management. Agricultural Water Management, 2016, 178, 366-376.	2.4	42
15	Application of Large-Scale, Multi-Resolution Watershed Modeling Framework Using the Hydrologic and Water Quality System (HAWQS). Water (Switzerland), 2016, 8, 164.	1.2	40
16	Impacts of alternative climate information on hydrologic processes with SWAT: A comparison of NCDC, PRISM and NEXRAD datasets. Catena, 2017, 156, 353-364.	2.2	36
17	Thinking outside of the lake: Can controls on nutrient inputs into Lake Erie benefit stream conservation in its watershed?. Journal of Great Lakes Research, 2016, 42, 1322-1331.	0.8	34
18	Modeling nutrient removal using watershed-scale implementation of the two-stage ditch. Ecological Engineering, 2017, 108, 358-369.	1.6	34

#	Article	IF	Citations
19	Development of Sediment and Nutrient Export Coefficients for U.S. Ecoregions. Journal of the American Water Resources Association, 2015, 51, 758-775.	1.0	33
20	IPEAT+: A Built-In Optimization and Automatic Calibration Tool of SWAT+. Water (Switzerland), 2019, 11 , 1681 .	1.2	29
21	Assessment of Input Uncertainty in SWAT Using Latent Variables. Water Resources Management, 2015, 29, 1137-1153.	1.9	28
22	Uncertainty of hydrologic processes caused by bias-corrected CMIP5 climate change projections with alternative historical data sources. Journal of Hydrology, 2019, 568, 551-561.	2.3	28
23	Transferability of SWAT Models between SWAT2009 and SWAT2012. Journal of Environmental Quality, 2014, 43, 869-880.	1.0	22
24	C-SWAT: The Soil and Water Assessment Tool with consolidated input files in alleviating computational burden of recursive simulations. Computers and Geosciences, 2014, 72, 221-232.	2.0	20
25	Impacts of incorporating dominant crop rotation patterns as primary land use change on hydrologic model performance. Agriculture, Ecosystems and Environment, 2017, 247, 33-42.	2.5	20
26	Assessment of Optional Sediment Transport Functions via the Complex Watershed Simulation Model SWAT. Water (Switzerland), 2017, 9, 76.	1.2	20
27	Impact of human activities on phosphorus flows on an early eutrophic plateau: A case study in Southwest China. Science of the Total Environment, 2020, 714, 136851.	3.9	19
28	Effects of particulate fractions on critical slope and critical rainfall intensity for runoff phosphorus from bare loessial soil. Catena, 2021, 196, 104935.	2.2	19
29	Assessment of model predictions and parameter transferability by alternative land use data on watershed modeling. Journal of Hydrology, 2015, 527, 458-470.	2.3	18
30	Improving model prediction reliability through enhanced representation of wetland soil processes and constrained model auto calibration – A paired watershed study. Journal of Hydrology, 2016, 541, 1088-1103.	2.3	18
31	Using multiple watershed models to assess the water quality impacts of alternate land development scenarios for a small community. Catena, 2017, 150, 87-99.	2.2	18
32	Input uncertainty on watershed modeling: Evaluation of precipitation and air temperature data by latent variables using SWAT. Ecological Engineering, 2018, 122, 16-26.	1.6	18
33	Exploring the multiscale hydrologic regulation of multipond systems in a humid agricultural catchment. Water Research, 2020, 184, 115987.	5.3	18
34	Linking watershed modeling and bacterial source tracking to better assess E. coli sources. Science of the Total Environment, 2019, 648, 164-175.	3.9	17
35	Evaluation of concentration-discharge dynamics and nitrogen export on anthropogenic inputs and stormflow across alternative time-scales. Ecological Indicators, 2019, 98, 879-887.	2.6	17
36	Regional Blue and Green Water Balances and Use by Selected Crops in the scp> U.S. scp>. Journal of the American Water Resources Association, 2015, 51, 1626-1642.	1.0	16

#	Article	IF	Citations
37	Computational Procedure for Evaluating Sampling Techniques on Watershed Model Calibration. Journal of Hydrologic Engineering - ASCE, 2015, 20, .	0.8	16
38	Effects of sampling strategies and estimation algorithms on total nitrogen load determination in a small agricultural headwater watershed. Journal of Hydrology, 2019, 579, 124114.	2.3	16
39	The overlooked role of diffuse household livestock production in nitrogen pollution at the watershed scale. Journal of Cleaner Production, 2020, 272, 122758.	4.6	16
40	Use of multiple modules and Bayesian Model Averaging to assess structural uncertainty of catchment-scale wetland modeling in a Coastal Plain landscape. Journal of Hydrology, 2020, 582, 124544.	2.3	16
41	Development of a Cropland Management Dataset to Support U.S. Swat Assessments. Journal of the American Water Resources Association, 2016, 52, 269-274.	1.0	15
42	Forecasting the combined effects of anticipated climate change and agricultural conservation practices on fish recruitment dynamics in Lake Erie. Freshwater Biology, 2020, 65, 1487-1508.	1.2	15
43	Organophosphate esters in surface soils from a heavily urbanized region of Eastern China: Occurrence, distribution, and ecological risk assessment. Environmental Pollution, 2021, 291, 118200.	3.7	15
44	The impact of considering uncertainty in measured calibration/validation data during auto-calibration of hydrologic and water quality models. Stochastic Environmental Research and Risk Assessment, 2015, 29, 1891-1901.	1.9	14
45	Projecting the effects of agricultural conservation practices on stream fish communities in a changing climate. Science of the Total Environment, 2020, 747, 141112.	3.9	14
46	Augmenting Watershed Model Calibration with Incorporation of Ancillary Data Sources and Qualitative Soft Data Sources. Journal of the American Water Resources Association, 2016, 52, 788-798.	1.0	12
47	Evaluation of Dynamically Dimensioned Search Algorithm forÂOptimizing <scp>SWAT</scp> by Altering Sampling Distributions and Searching Range. Journal of the American Water Resources Association, 2016, 52, 443-455.	1.0	12
48	Deposition- and transport-dominated erosion regime effects on the loss of dissolved and sediment-bound organic carbon: Evaluation in a cultivated soil with laboratory rainfall simulations. Science of the Total Environment, 2021, 750, 141717.	3.9	12
49	Assessment of input uncertainty by seasonally categorized latent variables using SWAT. Journal of Hydrology, 2015, 531, 685-695.	2.3	11
50	Is the correlation between hydro-environmental variables consistent with their own time variability degrees in a large-scale loessial watershed?. Science of the Total Environment, 2020, 722, 137737.	3.9	11
51	Accounting for Conceptual Soil Erosion and Sediment Yield Modeling Uncertainty in the APEX Model Using Bayesian Model Averaging. Journal of Hydrologic Engineering - ASCE, 2015, 20, .	0.8	10
52	Multisite Assessment of Hydrologic Processes in Snow-Dominated Mountainous River Basins in Colorado Using a Watershed Model. Journal of Hydrologic Engineering - ASCE, 2015, 20, .	0.8	10
53	Dissolved organic carbon driven by rainfall events from a semi-arid catchment during concentrated rainfall season in the Loess Plateau, China. Hydrology and Earth System Sciences, 2019, 23, 3141-3153.	1.9	10
54	Semi-two dimensional numerical prediction of non-equilibrium sediment transport in reservoir using stream tubes and theory of minimum stream power. KSCE Journal of Civil Engineering, 2015, 19, 1922-1929.	0.9	9

#	Article	IF	Citations
55	Applications of Explicitly Incorporated/Postâ€Processing Measurement Uncertainty in Watershed Modeling. Journal of the American Water Resources Association, 2016, 52, 523-540.	1.0	9
56	Design and development of a web-based interface for the Agricultural Policy Environmental eXtender (APEX) model. Environmental Modelling and Software, 2019, 111, 368-374.	1.9	9
57	Sefficiency of a Water Use System: The Case of Kano River Irrigation Project, Nigeria. International Journal of Civil Engineering, 2018, 16, 929-939.	0.9	8
58	Distribution of agricultural land regulates stream water isotopes over multiple spatial scale in a subtropical forested watershed. Journal of Hydrology, 2019, 579, 124206.	2.3	8
59	Investigation of watershed nutrient export affected by extreme events and the corresponding sampling frequency. Journal of Environmental Management, 2019, 250, 109477.	3.8	8
60	Assessment of extrinsic and intrinsic influences on water quality variation in subtropical agricultural multipond systems. Environmental Pollution, 2021, 276, 116689.	3.7	8
61	Numerical simulation on a tremendous debris flow caused by Typhoon Morakot in the Jiaopu Stream, Taiwan. Journal of Mountain Science, 2014, 11, 1-18.	0.8	7
62	Integrated assessment of nitrogen runoff to the Gulf of Mexico. Resources and Energy Economics, 2022, 67, 101279.	1.1	7
63	An Auto-Calibration Tool for the Agricultural Policy Environmental eXtender (APEX) Model. Transactions of the ASABE, 2014, , 1087-1098.	1.1	6
64	Effect of Water Quality Sampling Approaches on Nitrate Load Predictions of a Prominent Regression-Based Model. Water (Switzerland), 2017, 9, 895.	1.2	6
65	Erosion and covered zones altered by surface coverage effects on soil nitrogen and carbon loss from an agricultural slope under laboratory-simulated rainfall events. International Soil and Water Conservation Research, 2022, 10, 382-392.	3.0	6
66	Evaluation of seasonal patterns of hydraulic redistribution in a humid subtropical area, East China. Hydrological Processes, 2020, 34, 1052-1062.	1.1	5
67	Uncertainty analysis for integrated water system simulations using GLUE with different acceptability thresholds. Science China Technological Sciences, 2021, 64, 1791-1804.	2.0	4
68	Characterization of landslide distribution and sediment yield in the TsengWen River Watershed, Taiwan. Catena, 2019, 174, 184-198.	2.2	3
69	Nitrogen Transport/Deposition from Paddy Ecosystem and Potential Pollution Risk Period in Southwest China. Water (Switzerland), 2022, 14, 539.	1.2	3
70	Distribution of Selected Soil and Water Conservation Practices in the <scp>U.S.</scp> as Identified with Google Earth. Journal of the American Water Resources Association, 2017, 53, 1229-1240.	1.0	2
71	An Introduction to the Hyperspace of Hargreaves-Samani Reference Evapotranspiration. Sustainability, 2018, 10, 4277.	1.6	2
72	Characteristics of wet dissolved carbon deposition in a semi-arid catchment at the Loess Plateau, China. Biogeosciences, 2018, 15, 3345-3356.	1.3	2

#	Article	IF	CITATIONS
73	Tiered Approaches in Analyzing Rice Field Pesticide Fate and Transport for Ecological Risk Assessment. ACS Symposium Series, 2018, , 347-377.	0.5	2
74	Soft Data in Hydrologic Modeling: Prediction of Ecologically Relevant Flows with Alternate Land Use/Land Cover Data. Water (Switzerland), 2021, 13, 2947.	1.2	2
75	Assessment of Model Configuration Effect by Alternative Evapotranspiration, Runoff, and Water Routing Functions on Watershed Modeling Using SWAT. Transactions of the ASABE, 2015, , 393-404.	1.1	1
76	Modeling Pesticide Fate and Transport at Watershed Scale Using the Soil & Water Assessment Tool: General Applications and Mitigation Strategies. ACS Symposium Series, 2019, , 391-419.	0.5	1