## Vijayaraghavan Rajagopal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5033449/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | OpenCMISS: A multi-physics & amp; multi-scale computational infrastructure for the VPH/Physiome project. Progress in Biophysics and Molecular Biology, 2011, 107, 32-47.                                                              | 2.9  | 123       |
| 2  | Creating Individual-specific Biomechanical Models of the Breast for Medical Image Analysis. Academic<br>Radiology, 2008, 15, 1425-1436.                                                                                               | 2.5  | 69        |
| 3  | Determining the finite elasticity reference state from a loaded configuration. International Journal for Numerical Methods in Engineering, 2007, 72, 1434-1451.                                                                       | 2.8  | 62        |
| 4  | Examination of the Effects of Heterogeneous Organization of RyR Clusters, Myofibrils and<br>Mitochondria on Ca2+ Release Patterns in Cardiomyocytes. PLoS Computational Biology, 2015, 11,<br>e1004417.                               | 3.2  | 46        |
| 5  | Modeling breast biomechanics for multiâ€modal image analysis—successes and challenges. Wiley<br>Interdisciplinary Reviews: Systems Biology and Medicine, 2010, 2, 293-304.                                                            | 6.6  | 45        |
| 6  | A biomechanical model of mammographic compressions. Biomechanics and Modeling in Mechanobiology, 2008, 7, 43-52.                                                                                                                      | 2.8  | 43        |
| 7  | Breast lesion co-localisation between X-ray and MR images using finite element modelling. Medical<br>Image Analysis, 2013, 17, 1256-1264.                                                                                             | 11.6 | 41        |
| 8  | Predicting Tumour Location by Simulating Large Deformations of the Breast Using a 3D Finite Element<br>Model and Nonlinear Elasticity. Lecture Notes in Computer Science, 2004, , 217-224.                                            | 1.3  | 36        |
| 9  | Modeling of the mechanical function of the human gastroesophageal junction using an anatomically realistic three-dimensional model. Journal of Biomechanics, 2009, 42, 1604-1609.                                                     | 2.1  | 36        |
| 10 | Identification of mechanical properties of heterogeneous soft bodies using gravity loading.<br>International Journal for Numerical Methods in Biomedical Engineering, 2011, 27, 391-407.                                              | 2.1  | 36        |
| 11 | Computational modeling of singleâ€cell mechanics and cytoskeletal mechanobiology. Wiley<br>Interdisciplinary Reviews: Systems Biology and Medicine, 2018, 10, e1407.                                                                  | 6.6  | 36        |
| 12 | Unconventional acoustic approaches for localized and designed micromanipulation. Lab on A Chip, 2021, 21, 2837-2856.                                                                                                                  | 6.0  | 36        |
| 13 | Changes in mitochondrial morphology and organization can enhance energy supply from<br>mitochondrial oxidative phosphorylation in diabetic cardiomyopathy. American Journal of Physiology<br>- Cell Physiology, 2017, 312, C190-C197. | 4.6  | 33        |
| 14 | An automated workflow for segmenting single adult cardiac cells from large-volume serial<br>block-face scanning electron microscopy data. Journal of Structural Biology, 2018, 202, 275-285.                                          | 2.8  | 27        |
| 15 | Super-resolution fluorescence imaging to study cardiac biophysics: α-actinin distribution and Z-disk<br>topologies in optically thick cardiac tissue slices. Progress in Biophysics and Molecular Biology, 2014,<br>115, 328-339.     | 2.9  | 25        |
| 16 | Breast Image Registration by Combining Finite Elements and Free-Form Deformations. Lecture Notes in<br>Computer Science, 2010, , 736-743.                                                                                             | 1.3  | 24        |
| 17 | Insights on the impact of mitochondrial organisation on bioenergetics in high-resolution computational models of cardiac cell architecture. PLoS Computational Biology, 2018, 14, e1006640.                                           | 3.2  | 23        |
| 18 | Surface areaâ€ŧoâ€volume ratio, not cellular viscoelasticity, is the major determinant of red blood cell traversal through small channels. Cellular Microbiology, 2021, 23, e13270.                                                   | 2.1  | 22        |

| #  | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Modelling Mammographic Compression of the Breast. Lecture Notes in Computer Science, 2008, 11, 758-765.                                                                                                             | 1.3 | 22        |
| 20 | Frictional contact mechanics methods for soft materials: Application to tracking breast cancers.<br>Journal of Biomechanics, 2008, 41, 69-77.                                                                       | 2.1 | 20        |
| 21 | Multimodal analysis of <i>Plasmodium knowlesi</i> â€infected erythrocytes reveals large<br>invaginations, swelling of the host cell, and rheological defects. Cellular Microbiology, 2019, 21,<br>e13005.           | 2.1 | 20        |
| 22 | Erythrocyte β spectrin can be genetically targeted to protect mice from malaria. Blood Advances, 2017,<br>1, 2624-2636.                                                                                             | 5.2 | 16        |
| 23 | EM-stellar: benchmarking deep learning for electron microscopy image segmentation. Bioinformatics, 2021, 37, 97-106.                                                                                                | 4.1 | 16        |
| 24 | Membrane Tension Can Enhance Adaptation to Maintain Polarity of Migrating Cells. Biophysical<br>Journal, 2020, 119, 1617-1629.                                                                                      | 0.5 | 15        |
| 25 | Ca2+ Release via IP3 Receptors Shapes the Cardiac Ca2+ Transient for Hypertrophic Signaling.<br>Biophysical Journal, 2020, 119, 1178-1192.                                                                          | 0.5 | 13        |
| 26 | Development of a three-dimensional finite element model of breast mechanics. , 2004, 2004, 5080-3.                                                                                                                  |     | 11        |
| 27 | The Breast Biomechanics Reference State for Multi-modal Image Analysis. Lecture Notes in Computer Science, 2008, , 385-392.                                                                                         | 1.3 | 11        |
| 28 | Towards Tracking Breast Cancer Across Medical Images Using Subject-Specific Biomechanical Models. ,<br>2007, 10, 651-658.                                                                                           |     | 11        |
| 29 | Modelling Prone to Supine Breast Deformation Under Gravity Loading Using Heterogeneous Finite Element Models. , 2012, , 29-38.                                                                                      |     | 10        |
| 30 | Periodic Rayleigh streaming vortices and Eckart flow arising from traveling-wave-based diffractive acoustic fields. Physical Review E, 2021, 104, 045104.                                                           | 2.1 | 10        |
| 31 | Finite Element Modelling of Breast Biomechanics: Directly Calculating the Reference State. , 2006, 2006, 420-3.                                                                                                     |     | 9         |
| 32 | EM-net: Deep learning for electron microscopy image segmentation. , 2021, , .                                                                                                                                       |     | 9         |
| 33 | Cortical tension initiates the positive feedback loop between cadherin and F-actin. Biophysical<br>Journal, 2022, 121, 596-606.                                                                                     | 0.5 | 9         |
| 34 | Assessing Cardiomyocyte Excitation-Contraction Coupling Site Detection From Live Cell Imaging Using<br>a Structurally-Realistic Computational Model of Calcium Release. Frontiers in Physiology, 2019, 10,<br>1263. | 2.8 | 8         |
| 35 | Patient-Specific Modeling of Breast Biomechanics with Applications to Breast Cancer Detection and Treatment. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2011, , 379-412.                       | 1.0 | 7         |
| 36 | Automated segmentation of cardiomyocyte Z-disks from high-throughput scanning electron microscopy data. BMC Medical Informatics and Decision Making, 2019, 19, 272.                                                 | 3.0 | 7         |

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Efficient estimation of loadâ€free left ventricular geometry and passive myocardial properties using principal component analysis. International Journal for Numerical Methods in Biomedical Engineering, 2020, 36, e3313. | 2.1 | 7         |
| 38 | EGFRvIII Promotes Cell Survival during Endoplasmic Reticulum Stress through a Reticulocalbin<br>1-Dependent Mechanism. Cancers, 2021, 13, 1198.                                                                            | 3.7 | 7         |
| 39 | Automated framework to reconstruct 3D model of cardiac Z-disk: an image processing approach. , 2018, , .                                                                                                                   |     | 6         |
| 40 | Assessment of single beat end-systolic elastance methods for quantifying ventricular contractility.<br>Heart and Vessels, 2019, 34, 716-723.                                                                               | 1.2 | 6         |
| 41 | Mapping Microcalcifications Between 2D Mammograms and 3D MRI Using a Biomechanical Model of the Breast. , 2010, , 17-28.                                                                                                   |     | 6         |
| 42 | Stochastic modelling of cardiac cell structure. , 2010, 2010, 3257-60.                                                                                                                                                     |     | 5         |
| 43 | A Semi-Automated Workflow for Segmenting Contents of Single Cardiac Cells from Serial-Block-Face<br>Scanning Electron Microscopy Data. Microscopy and Microanalysis, 2017, 23, 240-241.                                    | 0.4 | 4         |
| 44 | Paradoxes of Hymenoptera flight muscles, extreme machines. Biophysical Reviews, 2022, 14, 403-412.                                                                                                                         | 3.2 | 4         |
| 45 | The Cell Physiome: What Do We Need in a Computational Physiology Framework for Predicting<br>Single-Cell Biology?. Annual Review of Biomedical Data Science, 2022, 5, 341-366.                                             | 6.5 | 4         |
| 46 | Role of actin filaments and cis binding in cadherin clustering and patterning. PLoS Computational Biology, 2022, 18, e1010257.                                                                                             | 3.2 | 4         |
| 47 | Biomechanical modelling for breast image registration. Proceedings of SPIE, 2008, , .                                                                                                                                      | 0.8 | 3         |
| 48 | Creating a Structurally Realistic Finite Element Geometric Model of a Cardiomyocyte to Study the<br>Role of Cellular Architecture in Cardiomyocyte Systems Biology. Journal of Visualized Experiments,<br>2018, , .        | 0.3 | 3         |
| 49 | Method for Validating Breast Compression Models Using Normalised Cross-Correlation. , 2010, , 63-71.                                                                                                                       |     | 3         |
| 50 | Finite element modelling of breast biomechanics: finding a reference state. , 2005, 2005, 3268-71.                                                                                                                         |     | 2         |
| 51 | A computational study of the role of mitochondrial organization on cardiac bioenergetics. , 2017, 2017, 2017, 2696-2699.                                                                                                   |     | 2         |
| 52 | Modelling cardiomyocyte energetics. , 0, , .                                                                                                                                                                               |     | 2         |
| 53 | Multimodal imaging reveals membrane skeleton reorganisation during reticulocyte maturation and<br>differences in dimple and rim regions of mature erythrocytes. Journal of Structural Biology: X, 2022,<br>6, 100056.      | 1.3 | 2         |
| 54 | Correlation of breast image alignment using biomechanical modelling. Proceedings of SPIE, 2009, , .                                                                                                                        | 0.8 | 1         |

| #  | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Creatine-Kinase Shuttle and Rapid Mitochondrial Membrane Potential Conductivity are Needed<br>Simultaneously to Maintain Uniform Metabolite Distributions in the Cardiac Cell Contraction Cycle.<br>Biophysical Journal, 2018, 114, 550a. | 0.5 | 1         |
| 56 | Mixed Signals: Interaction between RyR and IP3R Mediated Calcium Release Shapes the Calcium<br>Transient for Hypertrophic Signalling in Cardiomyocytes. Biophysical Journal, 2018, 114, 212a-213a.                                        | 0.5 | 1         |
| 57 | A toolbox for generating scalable mitral valve morphometric models. Computers in Biology and Medicine, 2021, 135, 104628.                                                                                                                 | 7.0 | 1         |
| 58 | Computational modeling of the breast during mammography for tumor tracking. , 2005, 5746, 817.                                                                                                                                            |     | 0         |
| 59 | Modelling the Structure and Function of Cardiac Cell Transverse-Axial-Tubules. Biophysical Journal, 2011, 100, 293a.                                                                                                                      | 0.5 | Ο         |
| 60 | Cardiac Excitation-Contraction Coupling Proteins: A 3D Spatial Analysis. Biophysical Journal, 2011, 100, 621a-622a.                                                                                                                       | 0.5 | 0         |
| 61 | Subcellular Structural Changes in Diabetic Cardiomyopathy and its Impact on Cardiac Cell Calcium<br>Dynamics. Biophysical Journal, 2012, 102, 104a.                                                                                       | 0.5 | 0         |
| 62 | Detecting RyR Clusters with CaCLEAN: Validation and Influence of Spatial Heterogeneity. Biophysical Journal, 2019, 116, 42a-43a.                                                                                                          | 0.5 | 0         |
| 63 | How Does the Internal Structure of Cardiac Muscle Cells Regulate Cellular Metabolism?. Microscopy and Microanalysis, 2019, 25, 240-241.                                                                                                   | 0.4 | 0         |
| 64 | The Feedback between Cellular Mechanics and Chemical Signalling during Cytoskeletal Remodelling.<br>Biophysical Journal, 2019, 116, 414a.                                                                                                 | 0.5 | 0         |
| 65 | A Computational Study of the Dynamics of Cadherin-Catenin Complex Regulated by Actin Cytoskeleton.<br>Biophysical Journal, 2021, 120, 130a.                                                                                               | 0.5 | Ο         |
| 66 | Enhancing student learning through trans-disciplinary project-based assessment in bioengineering.<br>Pacific Journal of Technology Enhanced Learning, 2021, 3, 4-5.                                                                       | 0.3 | 0         |
| 67 | Surface Area-to-Volume Ratio, not Cellular Viscoelasticity is the Major Determinant of Red Blood Cell<br>Traversal through Small Channels. Biophysical Journal, 2021, 120, 170a.                                                          | 0.5 | 0         |
| 68 | Respiration mask waveguide optimisation for maximised speech intelligibility. Journal of the Acoustical Society of America, 2021, 150, 2030-2039.                                                                                         | 1.1 | 0         |