
Fernando Juan Pitossi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/50330/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plasma membrane calcium ATPase downregulation in dopaminergic neurons alters cellular physiology and motor behaviour in <scp><i>Drosophila melanogaster</i></scp> . European Journal of Neuroscience, 2021, 54, 5915-5931.	1.2	3
2	Understanding the role of the blood brain barrier and peripheral inflammation on behaviour and pathology on ongoing confined cortical lesions. Multiple Sclerosis and Related Disorders, 2021, 57, 103346.	0.9	2
3	A familiar study on self-limited childhood epilepsy patients using hIPSC-derived neurons shows a bias towards immaturity at the morphological, electrophysiological and gene expression levels. Stem Cell Research and Therapy, 2021, 12, 590.	2.4	3
4	Cell therapy for Parkinson′s disease is coming of age: current challenges and future prospects with a focus on immunomodulation. Gene Therapy, 2020, 27, 6-14.	2.3	12
5	Environmental enrichment improves cognitive symptoms and pathological features in a focal model of cortical damage of multiple sclerosis. Brain Research, 2020, 1727, 146520.	1.1	13
6	A new focal model resembling features of cortical pathology of the progressive forms of multiple sclerosis: Influence of innate immunity. Brain, Behavior, and Immunity, 2018, 69, 515-531.	2.0	25
7	Chronic Hippocampal Expression of Notch Intracellular Domain Induces Vascular Thickening, Reduces Glucose Availability, and Exacerbates Spatial Memory Deficits in a Rat Model of Early Alzheimer. Molecular Neurobiology, 2018, 55, 8637-8650.	1.9	12
8	Iron Availability Compromises Not Only Oligodendrocytes But Also Astrocytes and Microglial Cells. Molecular Neurobiology, 2018, 55, 1068-1081.	1.9	26
9	Glial Cell–Elicited Activation of Brain Microvasculature in Response to <i>Brucella abortus</i> Infection Requires ASC Inflammasome–Dependent IL-1β Production. Journal of Immunology, 2016, 196, 3794-3805.	0.4	23
10	Cell therapy for Parkinson׳s disease: Functional role of the host immune response on survival and differentiation of dopaminergic neuroblasts. Brain Research, 2016, 1638, 15-29.	1.1	12
11	Banking on iPSC- Is it Doable and is it Worthwhile. Stem Cell Reviews and Reports, 2015, 11, 1-10.	5.6	78
12	Cell reprogramming and neuronal differentiation applied to neurodegenerative diseases: Focus on Parkinson's disease. FEBS Letters, 2015, 589, 3396-3406.	1.3	5
13	Fibulin-2 is a key mediator of the pro-neurogenic effect of TGF-beta1 on adult neural stem cells. Molecular and Cellular Neurosciences, 2015, 67, 75-83.	1.0	15
14	Differentiation of Mesenchymal Stem Cells into Retinal Progenitor Cells. Ophthalmic Research, 2015, 53, 28-29.	1.0	1
15	Stem cell research in Latin America: update, challenges and opportunities in a priority research area. Regenerative Medicine, 2015, 10, 785-798.	0.8	8
16	Chronic systemic IL-1β exacerbates central neuroinflammation independently of the blood–brain barrier integrity. Journal of Neuroimmunology, 2015, 278, 30-43.	1.1	42
17	Current Status of Stem Cells and Regenerative Medicine Research in Argentina. Stem Cells and Development, 2014, 23, 17-19.	1.1	3
18	Special issue commentary: The changing face of inflammation in the brain. Molecular and Cellular Neurosciences, 2013, 53, 1-5.	1.0	10

Fernando Juan Pitossi

#	Article	IF	CITATIONS
19	Differential vulnerability of adult neurogenesis by adult and prenatal inflammation: Role of TGF-β1. Brain, Behavior, and Immunity, 2013, 34, 17-28.	2.0	41
20	Resident Neural Stem Cells. , 2013, , 69-87.		1
21	Interleukin-1β and tumor necrosis factor-α: reliable targets for protective therapies in Parkinson's Disease?. Frontiers in Cellular Neuroscience, 2013, 7, 53.	1.8	123
22	CNS response to a second pro-inflammatory event depends on whether the primary demyelinating lesion is active or resolved. Brain, Behavior, and Immunity, 2012, 26, 1102-1115.	2.0	7
23	Notch signaling proteins HES-1 and Hey-1 bind to insulin degrading enzyme (IDE) proximal promoter and repress its transcription and activity: Implications for cellular Aβ metabolism. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 227-235.	1.9	30
24	Neuroprotective effects of human umbilical cord mesenchymal stromal cells in an immunocompetent animal model of Parkinson's disease. Journal of Neuroimmunology, 2012, 246, 43-50.	1.1	36
25	Early and adult hippocampal TGF-β1 overexpression have opposite effects on behavior. Brain, Behavior, and Immunity, 2011, 25, 1582-1591.	2.0	55
26	Neuroprotective and neurodegenerative effects of the chronic expression of tumor necrosis factor $\hat{l}\pm$ in the nigrostriatal dopaminergic circuit of adult mice. Experimental Neurology, 2011, 227, 237-251.	2.0	57
27	The Degenerating Substantia Nigra as a Susceptible Region for Gene Transfer-Mediated Inflammation. Parkinson's Disease, 2011, 2011, 1-8.	0.6	7
28	Inflammation and Parkinson's Disease. Parkinson's Disease, 2011, 2011, 1-2.	0.6	9
29	Pleiotrophin over-expression provides trophic support to dopaminergic neurons in parkinsonian rats. Molecular Neurodegeneration, 2011, 6, 40.	4.4	25
30	Nigral neurodegeneration triggered by striatal AdIL-1 administration can be exacerbated by systemic IL-1 expression. Journal of Neuroimmunology, 2010, 222, 29-39.	1.1	44
31	Chronic expression of low levels of tumor necrosis factor- \hat{l}_{\pm} in the substantia nigra elicits progressive neurodegeneration, delayed motor symptoms and microglia/macrophage activation. Neurobiology of Disease, 2010, 37, 630-640.	2.1	122
32	The more you have, the less you get: the functional role of inflammation on neuronal differentiation of endogenous and transplanted neural stem cells in the adult brain. Journal of Neurochemistry, 2010, 112, 1368-1385.	2.1	88
33	Prenatal inflammation impairs adult neurogenesis and memory related behavior through persistent hippocampal TGFβ1 downregulation. Brain, Behavior, and Immunity, 2010, 24, 1301-1309.	2.0	112
34	Evaluating the interaction between early postnatal inflammation and maternal care in the programming of adult anxiety and depression-related behaviors. Behavioural Brain Research, 2010, 213, 56-65.	1.2	32
35	Patients Beware: Commercialized Stem Cell Treatments on the Web. Cell Stem Cell, 2010, 7, 43-49.	5.2	50
36	Brucella abortus Induces the Secretion of Proinflammatory Mediators from Glial Cells Leading to Astrocyte Apoptosis. American Journal of Pathology, 2010, 176, 1323-1338.	1.9	59

Fernando Juan Pitossi

#	Article	IF	CITATIONS
37	Chronic Expression of Transforming Growth Factor-Beta Enhances Adult Neurogenesis. NeuroImmunoModulation, 2010, 17, 200-201.	0.9	75
38	Central and systemic IL-1 exacerbates neurodegeneration and motor symptoms in a model of Parkinson's disease. Brain, 2008, 131, 1880-1894.	3.7	301
39	Model based analysis of real-time PCR data from DNA binding dye protocols. BMC Bioinformatics, 2007, 8, 85.	1.2	36
40	Overexpression of IL-1Î ² by adenoviral-mediated gene transfer in the rat brain causes a prolonged hepatic chemokine response, axonal injury and the suppression of spontaneous behaviour. Neurobiology of Disease, 2007, 27, 151-163.	2.1	59
41	Neurogenic niche modulation by activated microglia: transforming growth factor \hat{I}^2 increases neurogenesis in the adult dentate gyrus. European Journal of Neuroscience, 2006, 23, 83-93.	1.2	275
42	Progressive neurodegeneration and motor disabilities induced by chronic expression of IL-1Î ² in the substantia nigra. Neurobiology of Disease, 2006, 24, 183-193.	2.1	198
43	Differential effects of interleukin-1β on neurotoxicity, cytokine induction and glial reaction in specific brain regions. Journal of Neuroimmunology, 2005, 168, 96-110.	1.1	55
44	Secreted Protein Acidic and Rich in Cysteine Produced by Human Melanoma Cells Modulates Polymorphonuclear Leukocyte Recruitment and Antitumor Cytotoxic Capacity. Cancer Research, 2005, 65, 5123-5132.	0.4	73
45	Central Nervous System Injury Triggers Hepatic CC and CXC Chemokine Expression that Is Associated with Leukocyte Mobilization and Recruitment to Both the Central Nervous System and the Liver. American Journal of Pathology, 2005, 166, 1487-1497.	1.9	138
46	Neuronal Differentiation in the Adult Hippocampus Recapitulates Embryonic Development. Journal of Neuroscience, 2005, 25, 10074-10086.	1.7	574
47	Learning modulation by endogenous hippocampal IL-1: Blockade of endogenous IL-1 facilitates memory formation. Hippocampus, 2004, 14, 526-535.	0.9	95
48	Study of cytokine induced neuropathology by high resolution proton NMR spectroscopy of rat urine. FEBS Letters, 2004, 568, 49-54.	1.3	27
49	Reversible Demyelination, Blood-Brain Barrier Breakdown, and Pronounced Neutrophil Recruitment Induced by Chronic IL-1 Expression in the Brain. American Journal of Pathology, 2004, 165, 1827-1837.	1.9	189
50	Hippocampal Interleukinâ€1β Gene Expression during Longâ€Term Potentiation Decays with Age. Annals of the New York Academy of Sciences, 2003, 992, 1-8.	1.8	40
51	Microglial activation with atypical proinflammatory cytokine expression in a rat model of Parkinson's disease. European Journal of Neuroscience, 2003, 18, 2731-2742.	1.2	214
52	BDNF-triggered events in the rat hippocampus are required for both short- and long-term memory formation. Hippocampus, 2002, 12, 551-560.	0.9	298
53	Transient expression of IL-11 ² induces acute lung injury and chronic repair leading to pulmonary fibrosis. Journal of Clinical Investigation, 2001, 107, 1529-1536.	3.9	655
54	Bias in Estimations of DNA Content by Competitive Polymerase Chain Reaction. Analytical Biochemistry, 2000, 287, 87-94.	1.1	16

#	ARTICLE	IF	CITATIONS
55	The Role of Peripheral and Brain-Borne Cytokines in Immune-Neuro-Endocrine Interactions. , 2000, , 149-155.		1
56	Not All Peripheral Immune Stimuli That Activate the HPA Axis Induce Proinflammatory Cytokine Gene Expression in the Hypothalamus. Annals of the New York Academy of Sciences, 2000, 917, 169-174.	1.8	11
57	Inhibition of Tumor Necrosis Factor-α Action within the CNS Markedly Reduces the Plasma Adrenocorticotropin Response to Peripheral Local Inflammation in Rats. Journal of Neuroscience, 1997, 17, 3262-3273.	1.7	50
58	Induction of cytokine transcripts in the central nervous system and pituitary following peripheral administration of endotoxin to mice. Journal of Neuroscience Research, 1997, 48, 287-298.	1.3	168
59	Mx proteins: GTPases with antiviral activity. Trends in Cell Biology, 1993, 3, 268-272.	3.6	145