Mahmoud Fotuhi-Firuzabad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5032767/publications.pdf

Version: 2024-02-01

269 papers

11,854 citations

24978 57 h-index 99 g-index

270 all docs

270 docs citations

times ranked

270

7111 citing authors

#	Article	IF	CITATIONS
1	Investigating the Impacts of Plug-in Hybrid Electric Vehicles on Power Distribution Systems. IEEE Transactions on Smart Grid, 2013, 4, 1351-1360.	6.2	417
2	Demand Response Scheduling by Stochastic SCUC. IEEE Transactions on Smart Grid, 2010, 1, 89-98.	6.2	373
3	Contingency-Constrained PMU Placement in Power Networks. IEEE Transactions on Power Systems, 2010, 25, 516-523.	4.6	343
4	Optimal Demand Response Aggregation in Wholesale Electricity Markets. IEEE Transactions on Smart Grid, 2013, 4, 1957-1965.	6.2	330
5	Optimal Placement of Phasor Measurement Units Using Immunity Genetic Algorithm. IEEE Transactions on Power Delivery, 2009, 24, 1014-1020.	2.9	322
6	Enhancing Power System Resilience Through Hierarchical Outage Management in Multi-Microgrids. IEEE Transactions on Smart Grid, 2016, 7, 2869-2879.	6.2	317
7	A Decomposed Solution to Multiple-Energy Carriers Optimal Power Flow. IEEE Transactions on Power Systems, 2014, 29, 707-716.	4.6	225
8	Synchrophasor Measurement Technology in Power Systems: Panorama and State-of-the-Art. IEEE Access, 2014, 2, 1607-1628.	2.6	216
9	Value of Distribution Network Reconfiguration in Presence of Renewable Energy Resources. IEEE Transactions on Power Systems, 2016, 31, 1879-1888.	4.6	198
10	Load commitment in a smart home. Applied Energy, 2012, 96, 45-54.	5.1	196
11	A Stochastic Multi-Objective Framework for Optimal Scheduling of Energy Storage Systems in Microgrids. IEEE Transactions on Smart Grid, 2017, 8, 117-127.	6.2	188
12	A Practical Scheme to Involve Degradation Cost of Lithium-Ion Batteries in Vehicle-to-Grid Applications. IEEE Transactions on Sustainable Energy, 2016, 7, 1730-1738.	5.9	177
13	Probabilistic Multistage PMU Placement in Electric Power Systems. IEEE Transactions on Power Delivery, 2011, 26, 841-849.	2.9	170
14	A Probabilistic Energy Management Scheme for Renewable-Based Residential Energy Hubs. IEEE Transactions on Smart Grid, 2017, 8, 2217-2227.	6.2	170
15	Probabilistic Optimal Power Flow in Correlated Hybrid Wind–Photovoltaic Power Systems. IEEE Transactions on Smart Grid, 2014, 5, 130-138.	6.2	169
16	Multiagent Genetic Algorithm: An Online Probabilistic View on Economic Dispatch of Energy Hubs Constrained by Wind Availability. IEEE Transactions on Sustainable Energy, 2014, 5, 699-708.	5.9	168
17	Optimized Sectionalizing Switch Placement Strategy in Distribution Systems. IEEE Transactions on Power Delivery, 2012, 27, 362-370.	2.9	164
18	A Reliability Model of Large Wind Farms for Power System Adequacy Studies. IEEE Transactions on Energy Conversion, 2009, 24, 792-801.	3.7	156

#	Article	IF	Citations
19	Capacity and output power estimation approach of individual behind-the-meter distributed photovoltaic system for demand response baseline estimation. Applied Energy, 2019, 253, 113595.	5.1	156
20	Home load management in a residential energy hub. Electric Power Systems Research, 2015, 119, 322-328.	2.1	153
21	Stochastic Reconfiguration and Optimal Coordination of V2G Plug-in Electric Vehicles Considering Correlated Wind Power Generation. IEEE Transactions on Sustainable Energy, 2015, 6, 822-830.	5.9	152
22	Optimal Sizing of Storage System in a Fast Charging Station for Plug-in Hybrid Electric Vehicles. IEEE Transactions on Transportation Electrification, 2016, 2, 443-453.	5.3	152
23	Energy Storage Planning for Enhanced Resilience of Power Distribution Networks Against Earthquakes. IEEE Transactions on Sustainable Energy, 2020, 11, 795-806.	5.9	144
24	Incorporating Large-Scale Distant Wind Farms in Probabilistic Transmission Expansion Planningâ€"Part I: Theory and Algorithm. IEEE Transactions on Power Systems, 2012, 27, 1585-1593.	4.6	141
25	Critical Component Identification in Reliability Centered Asset Management of Power Distribution Systems Via Fuzzy AHP. IEEE Systems Journal, 2012, 6, 593-602.	2.9	139
26	Stochastic Energy Management of Microgrids During Unscheduled Islanding Period. IEEE Transactions on Industrial Informatics, 2017, 13, 1079-1087.	7.2	131
27	Role of Outage Management Strategy in Reliability Performance of Multi-Microgrid Distribution Systems. IEEE Transactions on Power Systems, 2018, 33, 2359-2369.	4.6	127
28	Load management in a residential energy hub with renewable distributed energy resources. Energy and Buildings, 2015, 107, 234-242.	3.1	126
29	Impact of WAMS Malfunction on Power System Reliability Assessment. IEEE Transactions on Smart Grid, 2012, 3, 1302-1309.	6.2	124
30	Unit Commitment With Probabilistic Spinning Reserve and Interruptible Load Considerations. IEEE Transactions on Power Systems, 2009, 24, 388-397.	4.6	121
31	Home energy management incorporating operational priority of appliances. International Journal of Electrical Power and Energy Systems, 2016, 74, 286-292.	3.3	120
32	Reliability Modeling of PMUs Using Fuzzy Sets. IEEE Transactions on Power Delivery, 2010, 25, 2384-2391.	2.9	114
33	A Comprehensive Scheme for Reliability Centered Maintenance in Power Distribution Systemsâ€"Part I: Methodology. IEEE Transactions on Power Delivery, 2013, 28, 761-770.	2.9	107
34	Integration of Price-Based Demand Response in DisCos' Short-Term Decision Model. IEEE Transactions on Smart Grid, 2014, 5, 2235-2245.	6.2	100
35	Integrating Load Reduction Into Wholesale Energy Market With Application to Wind Power Integration. IEEE Systems Journal, 2012, 6, 35-45.	2.9	99
36	Distribution network reliability improvements in presence of demand response. IET Generation, Transmission and Distribution, 2014, 8, 2027-2035.	1.4	99

#	Article	IF	CITATIONS
37	ISO's Optimal Strategies for Scheduling the Hourly Demand Response in Day-Ahead Markets. IEEE Transactions on Power Systems, 2014, 29, 2636-2645.	4.6	98
38	On the Use of Pumped Storage for Wind Energy Maximization in Transmission-Constrained Power Systems. IEEE Transactions on Power Systems, 2015, 30, 1017-1025.	4.6	98
39	Reliability Studies of Modern Distribution Systems Integrated With Renewable Generation and Parking Lots. IEEE Transactions on Sustainable Energy, 2017, 8, 431-440.	5.9	96
40	An Adaptive Approach for PEVs Charging Management and Reconfiguration of Electrical Distribution System Penetrated by Renewables. IEEE Transactions on Industrial Informatics, 2018, 14, 2001-2010.	7.2	94
41	Optimized Probabilistic PHEVs Demand Management in the Context of Energy Hubs. IEEE Transactions on Power Delivery, 2015, 30, 996-1006.	2.9	91
42	Detecting the Location of Short-Circuit Faults in Active Distribution Network Using PMU-Based State Estimation. IEEE Transactions on Smart Grid, 2020, 11, 1396-1406.	6.2	89
43	Comparative Hourly Scheduling of Centralized and Distributed Storage in Day-Ahead Markets. IEEE Transactions on Sustainable Energy, 2014, 5, 729-737.	5.9	82
44	Probabilistic power flow of correlated hybrid windâ€photovoltaic power systems. IET Renewable Power Generation, 2014, 8, 649-658.	1.7	78
45	Component and Mode Models for the Short-Term Scheduling of Combined-Cycle Units. IEEE Transactions on Power Systems, 2009, 24, 976-990.	4.6	77
46	Energy storage in renewableâ€based residential energy hubs. IET Generation, Transmission and Distribution, 2016, 10, 3127-3134.	1.4	75
47	Reliability Studies of Distribution Systems Integrated With Electric Vehicles Under Battery-Exchange Mode. IEEE Transactions on Power Delivery, 2016, 31, 2473-2482.	2.9	75
48	Simultaneous Placement of Fault Indicator and Sectionalizing Switch in Distribution Networks. IEEE Transactions on Smart Grid, 2019, 10, 2278-2287.	6.2	74
49	Optimal Distribution Network Automation Considering Earth Fault Events. IEEE Transactions on Smart Grid, 2015, 6, 1010-1018.	6.2	72
50	Power Distribution Network Expansion Planning Considering Distribution Automation. IEEE Transactions on Power Systems, 2015, 30, 1261-1269.	4.6	72
51	Generalized Analytical Approach to Assess Reliability of Renewable-Based Energy Hubs. IEEE Transactions on Power Systems, 2017, 32, 368-377.	4.6	71
52	Investigation of Carrier Demand Response Uncertainty on Energy Flow of Renewable-Based Integrated Electricity–Gas–Heat Systems. IEEE Transactions on Industrial Informatics, 2018, 14, 5133-5142.	7.2	71
53	Commercial Demand Response Programs in Bidding of a Technical Virtual Power Plant. IEEE Transactions on Industrial Informatics, 2018, 14, 5100-5111.	7.2	71
54	Reliability modeling and availability analysis of combined cycle power plants. International Journal of Electrical Power and Energy Systems, 2016, 79, 108-119.	3.3	66

#	Article	IF	CITATIONS
55	Reliability Evaluation of an HVDC Transmission System Tapped by a VSC Station. IEEE Transactions on Power Delivery, 2010, 25, 1962-1970.	2.9	63
56	Toward a Comprehensive Model of Large-Scale DFIG-Based Wind Farms in Adequacy Assessment of Power Systems. IEEE Transactions on Sustainable Energy, 2014, 5, 55-63.	5.9	61
57	Optimal PMU Placement Based on Probabilistic Cost/Benefit Analysis. IEEE Transactions on Power Systems, 2013, 28, 566-567.	4.6	59
58	A Comprehensive Scheme for Reliability-Centered Maintenance in Power Distribution Systemsâ€"Part II: Numerical Analysis. IEEE Transactions on Power Delivery, 2013, 28, 771-778.	2.9	57
59	Standard Test Systems for Modern Power System Analysis: An Overview. IEEE Industrial Electronics Magazine, 2019, 13, 86-105.	2.3	55
60	A Model for Stochastic Planning of Distribution Network and Autonomous DG Units. IEEE Transactions on Industrial Informatics, 2020, 16, 3685-3696.	7.2	55
61	A Linear Model for Dynamic Generation Expansion Planning Considering Loss of Load Probability. IEEE Transactions on Power Systems, 2018, 33, 6924-6934.	4.6	53
62	Short-Term Impacts of DR Programs on Reliability of Wind Integrated Power Systems Considering Demand-Side Uncertainties. IEEE Transactions on Power Systems, 2016, 31, 2481-2490.	4.6	52
63	Optimal Bidding Strategy of Transactive Agents in Local Energy Markets. IEEE Transactions on Smart Grid, 2019, 10, 5152-5162.	6.2	52
64	A Two-Stage Framework for Power Transformer Asset Maintenance Managementâ€"Part I: Models and Formulations. IEEE Transactions on Power Systems, 2013, 28, 1395-1403.	4.6	51
65	Outage Management in Residential Demand Response Programs. IEEE Transactions on Smart Grid, 2015, 6, 1453-1462.	6.2	51
66	Optimal Placement of Sectionalizing Switch Considering Switch Malfunction Probability. IEEE Transactions on Smart Grid, 2019, 10, 403-413.	6.2	51
67	Fuzzy Dynamic Thermal Rating of Transmission Lines. IEEE Transactions on Power Delivery, 2012, 27, 1885-1892.	2.9	48
68	Resilienceâ€based framework for switch placement problem in power distribution systems. IET Generation, Transmission and Distribution, 2018, 12, 1223-1230.	1.4	48
69	Deployment of Fault Indicator in Distribution Networks: A MIP-Based Approach. IEEE Transactions on Smart Grid, 2018, 9, 2259-2267.	6.2	48
70	Incorporating Large-Scale Distant Wind Farms in Probabilistic Transmission Expansion Planningâ€"Part II: Case Studies. IEEE Transactions on Power Systems, 2012, 27, 1594-1601.	4.6	47
71	Online Multicriteria Framework for Charging Management of PHEVs. IEEE Transactions on Vehicular Technology, 2014, 63, 3028-3037.	3.9	47
72	Correlation-driven machine learning for accelerated reliability assessment of solder joints in electronics. Scientific Reports, 2020, 10, 14821.	1.6	47

#	Article	IF	CITATIONS
73	Decentralized transactive energy management of multi-microgrid distribution systems based on ADMM. International Journal of Electrical Power and Energy Systems, 2021, 132, 107126.	3.3	47
74	MILP Model of Electricity Distribution System Expansion Planning Considering Incentive Reliability Regulations. IEEE Transactions on Power Systems, 2019, 34, 4300-4316.	4.6	44
75	Planning and Operation of Parking Lots Considering System, Traffic, and Drivers Behavioral Model. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49, 1879-1892.	5.9	44
76	Reliability Modeling of Dynamic Thermal Rating. IEEE Transactions on Power Delivery, 2013, 28, 1600-1609.	2.9	43
77	Optimal unified power flow controller application to enhance total transfer capability. IET Generation, Transmission and Distribution, 2015, 9, 358-368.	1.4	43
78	Compromising Wind and Solar Energies From the Power System Adequacy Viewpoint. IEEE Transactions on Power Systems, 2012, 27, 2368-2376.	4.6	42
79	Harnessing Ramp Capability of Spinning Reserve Services for Enhanced Power Grid Flexibility. IEEE Transactions on Industry Applications, 2019, 55, 7103-7112.	3.3	42
80	A Market Mechanism to Quantify Emergency Energy Transactions Value in a Multi-Microgrid System. IEEE Transactions on Sustainable Energy, 2019, 10, 426-437.	5.9	42
81	ATC enhancement using TCSC via artificial intelligent techniques. Electric Power Systems Research, 2008, 78, 11-20.	2.1	41
82	Optimized Midterm Preventive Maintenance Outage Scheduling of Thermal Generating Units. IEEE Transactions on Power Systems, 2012, 27, 1354-1365.	4.6	41
83	A MILP Model for Incorporating Reliability Indices in Distribution System Expansion Planning. IEEE Transactions on Power Systems, 2019, 34, 2453-2456.	4.6	41
84	Reliability Evaluation of Power Grids Considering Integrity Attacks Against Substation Protective IEDs. IEEE Transactions on Industrial Informatics, 2020, 16, 1035-1044.	7.2	41
85	Incorporating Service Quality Regulation in Distribution System Maintenance Strategy. IEEE Transactions on Power Delivery, 2011, 26, 2495-2504.	2.9	40
86	Developing a Two-Level Framework for Residential Energy Management. IEEE Transactions on Smart Grid, 2016, , 1-1.	6.2	40
87	Application of Game Theory in Reliability-Centered Maintenance of Electric Power Systems. IEEE Transactions on Industry Applications, 2017, 53, 936-946.	3.3	39
88	New Considerations in Modern Protection System Quantitative Reliability Assessment. IEEE Transactions on Power Delivery, 2010, 25, 2213-2222.	2.9	38
89	Identifying critical components for reliability centred maintenance management of deregulated power systems. IET Generation, Transmission and Distribution, 2015, 9, 828-837.	1.4	37
90	Impacts of Time-Varying Electricity Rates on Forward Contract Scheduling of DisCos. IEEE Transactions on Power Delivery, 2014, 29, 733-741.	2.9	36

#	Article	IF	CITATIONS
91	Operational Reliability Studies of Power Systems in the Presence of Energy Storage Systems. IEEE Transactions on Power Systems, 2018, 33, 3691-3700.	4.6	36
92	Sectionalizing Switch Placement in Distribution Networks Considering Switch Failure. IEEE Transactions on Smart Grid, 2019, 10, 1080-1082.	6.2	36
93	Electrical Power System Resilience Assessment: A Comprehensive Approach. IEEE Systems Journal, 2020, 14, 2643-2652.	2.9	35
94	An Enhanced MILP Model for Multistage Reliability-Constrained Distribution Network Expansion Planning. IEEE Transactions on Power Systems, 2022, 37, 118-131.	4.6	34
95	Developing a Distributed Robust Energy Management Framework for Active Distribution Systems. IEEE Transactions on Sustainable Energy, 2021, 12, 1891-1902.	5.9	34
96	A new formulation for power system reliability assessment with AC constraints. International Journal of Electrical Power and Energy Systems, 2014, 56, 298-306.	3.3	33
97	Planning to Equip the Power Distribution Networks with Automation System. IEEE Transactions on Power Systems, 2017, 32, 3451-3460.	4.6	33
98	Network-Constrained Transactive Coordination for Plug-In Electric Vehicles Participation in Real-Time Retail Electricity Markets. IEEE Transactions on Sustainable Energy, 2021, 12, 1439-1448.	5.9	33
99	Reliability improvement of distribution systems using SSVR. ISA Transactions, 2009, 48, 98-106.	3.1	31
100	Flexibility Scheduling for Large Customers. IEEE Transactions on Smart Grid, 2019, 10, 371-379.	6.2	31
101	Impacts of Fault Diagnosis Schemes on Distribution System Reliability. IEEE Transactions on Smart Grid, 2012, 3, 720-727.	6.2	30
102	Optimal distributed static series compensator placement for enhancing power system loadability and reliability. IET Generation, Transmission and Distribution, 2015, 9, 1043-1050.	1.4	28
103	Identifying critical components of combined cycle power plants for implementation of reliability-centered maintenance. CSEE Journal of Power and Energy Systems, 2016, 2, 87-97.	1.7	28
104	Domestic EWH and HVAC management in smart grids: Potential benefits and realization. Electric Power Systems Research, 2016, 134, 38-46.	2.1	28
105	A New Multiattribute Decision Making Support Tool for Identifying Critical Components in Power Transmission Systems. IEEE Systems Journal, 2018, 12, 316-327.	2.9	28
106	A multi-objective framework for distributed energy resources planning and storage management. Applied Energy, 2022, 314, 118887.	5.1	28
107	Integrated Planning for Distribution Automation and Network Capacity Expansion. IEEE Transactions on Smart Grid, 2019, 10, 4279-4288.	6.2	27
108	Reliability-Oriented Electricity Distribution System Switch and Tie Line Optimization. IEEE Access, 2020, 8, 130967-130978.	2.6	27

#	Article	IF	CITATIONS
109	Comprehensive Analytics for Reliability Evaluation of Conventional Isolated Multiswitch PWM DC–DC Converters. IEEE Transactions on Power Electronics, 2020, 35, 5254-5266.	5.4	26
110	An Incentive-Based Mechanism to Alleviate Active Power Congestion in a Multi-Agent Distribution System. IEEE Transactions on Smart Grid, 2021, 12, 1978-1988.	6.2	26
111	Composite System Reliability Assessment Incorporating an Interline Power-Flow Controller. IEEE Transactions on Power Delivery, 2008, 23, 1191-1199.	2.9	25
112	Optimal Electricity Procurement in Smart Grids With Autonomous Distributed Energy Resources. IEEE Transactions on Smart Grid, 2015, 6, 2975-2984.	6.2	25
113	Main Challenges of Implementing Penalty Mechanisms in Transactive Electricity Markets. IEEE Transactions on Power Systems, 2019, 34, 3954-3956.	4.6	25
114	System-Level Design for Reliability and Maintenance Scheduling in Modern Power Electronic-Based Power Systems. IEEE Open Access Journal of Power and Energy, 2020, 7, 414-429.	2.5	24
115	Modeling and Optimizing Recovery Strategies for Power Distribution System Resilience. IEEE Systems Journal, 2021, 15, 4725-4734.	2.9	24
116	Reliability assessment of distribution system with distributed generation., 2008,,.		23
117	Impacts of Remote Control Switch Malfunction on Distribution System Reliability. IEEE Transactions on Power Systems, 2016, , 1-1.	4.6	23
118	Stochastic Operation Framework for Distribution Networks Hosting High Wind Penetrations. IEEE Transactions on Sustainable Energy, 2019, 10, 344-354.	5.9	23
119	Incorporating flexibility requirements into distribution system expansion planning studies based on regulatory policies. International Journal of Electrical Power and Energy Systems, 2020, 118, 105769.	3.3	23
120	Incorporating Customer Reliability Cost in PEV Charge Scheduling Schemes Considering Vehicle to Home Capability. IEEE Transactions on Vehicular Technology, 2014, , 1-1.	3.9	22
121	Flexibilityâ€based operational management of a microgrid considering interaction with gas grid. IET Generation, Transmission and Distribution, 2021, 15, 2673-2683.	1.4	22
122	Advanced bidding strategy for participation of energy storage systems in joint energy and flexible ramping product market. IET Generation, Transmission and Distribution, 2020, 14, 5202-5210.	1.4	22
123	Reliability evaluation of a composite power system containing wind and solar generation., 2013,,.		21
124	A Two-Stage Framework for Power Transformer Asset Maintenance Managementâ€"Part II: Validation Results. IEEE Transactions on Power Systems, 2013, 28, 1404-1414.	4.6	21
125	Optimal placement of switching and protection devices in radial distribution networks to enhance system reliability using the AHP-PSO method. Turkish Journal of Electrical Engineering and Computer Sciences, 2019, 27, 181-196.	0.9	21
126	Linear Formulations for Topology-Variable-Based Distribution System Reliability Assessment Considering Switching Interruptions. IEEE Transactions on Smart Grid, 2020, 11, 4032-4043.	6.2	21

#	Article	IF	CITATIONS
127	Reliability Assessment of Conventional Isolated PWM DC-DC Converters. IEEE Access, 2021, 9, 46191-46200.	2.6	21
128	Modeling of D-STATCOM in distribution systems load flow. Journal of Zhejiang University: Science A, 2007, 8, 1532-1542.	1.3	20
129	Improved Markov Model for Reliability Assessment of Isolated Multiple-Switch PWM DC-DC Converters. IEEE Access, 2021, 9, 33666-33674.	2.6	20
130	Reliability assessment of distribution system with the integration of photovoltaic and energy storage systems. Sustainable Energy, Grids and Networks, 2021, 28, 100554.	2.3	20
131	Optimal Scheduling of Spinning Reserve Based on Well-Being Model. IEEE Transactions on Power Systems, 2007, 22, 2048-2057.	4.6	19
132	A multistage MILP-based model for integration of remote control switch into distribution networks. , 2016, , .		19
133	Increasing the resilience of distribution systems against hurricane by optimal switch placement. , 2017,		19
134	Reliability Evaluation in Microgrids With Non-Exponential Failure Rates of Power Units. IEEE Systems Journal, 2020, 14, 2861-2872.	2.9	19
135	Design and Routine Test Optimization of Modern Protection Systems With Reliability and Economic Constraints. IEEE Transactions on Power Delivery, 2012, 27, 271-278.	2.9	18
136	Demand response participation in wholesale energy markets. , 2012, , .		18
137	An MILP Model for Optimal Placement of Sectionalizing Switches and Tie Lines in Distribution Networks With Complex Topologies. IEEE Transactions on Smart Grid, 2021, 12, 4740-4751.	6.2	18
138	Electricity Distribution System Switch Optimization Under Incentive Reliability Scheme. IEEE Access, 2020, 8, 93455-93463.	2.6	18
139	A Bi-Level Framework for Expansion Planning in Active Power Distribution Networks. IEEE Transactions on Power Systems, 2022, 37, 2639-2654.	4.6	18
140	Developing new participation model of thermal generating units in flexible ramping market. IET Generation, Transmission and Distribution, 2019, 13, 2290-2298.	1.4	17
141	Iterative Machine Learning-Aided Framework Bridges Between Fatigue and Creep Damages in Solder Interconnections. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2022, 12, 349-358.	1.4	17
142	Assessing impact of demand response in emission-constrained environments., 2011,,.		16
143	PHEVs centralized/decentralized charging control mechanisms: Requirements and impacts. , 2013, , .		16
144	Determination of available transfer capability with implication of cascading collapse uncertainty. IET Generation, Transmission and Distribution, 2014, 8, 705-715.	1.4	16

#	Article	lF	CITATIONS
145	Customer Interruption Cost in Smart Grids. IEEE Transactions on Power Systems, 2014, 29, 994-995.	4.6	16
146	Identification of critical generating units for maintenance: a game theory approach. IET Generation, Transmission and Distribution, 2016, 10, 2942-2952.	1.4	16
147	Dayâ€ahead energy management framework for a networked gas–heat–electricity microgrid. IET Generation, Transmission and Distribution, 2019, 13, 4617-4629.	1.4	16
148	Controlled Islanding for Enhancing Grid Resilience Against Power System Blackout. IEEE Transactions on Power Delivery, 2021, 36, 2386-2396.	2.9	16
149	A novel efficient model for the power flow analysis of power systems. Turkish Journal of Electrical Engineering and Computer Sciences, 2015, 23, 52-66.	0.9	15
150	Transmission System Critical Component Identification Considering Full Substations Configuration and Protection Systems. IEEE Transactions on Power Systems, 2018, 33, 5365-5373.	4.6	15
151	Incorporating the effects of service quality regulation in decisionâ€making framework of distribution companies. IET Generation, Transmission and Distribution, 2018, 12, 4172-4181.	1.4	15
152	Economically Optimal Uncertainty Set Characterization for Power System Operational Flexibility. IEEE Transactions on Industrial Informatics, 2019, 15, 5456-5465.	7.2	15
153	Reliability-Based Optimal Bidding Strategy of a Technical Virtual Power Plant. IEEE Systems Journal, 2022, 16, 1080-1091.	2.9	15
154	Pandemic-Aware Day-Ahead Demand Forecasting Using Ensemble Learning. IEEE Access, 2022, 10, 7098-7106.	2.6	15
155	Impacts of plug-in hybrid electric vehicle uncertainty and grid unavailability on home load management. , 2012, , .		14
156	Reliability Modeling of Run-of-the-River Power Plants in Power System Adequacy Studies. IEEE Transactions on Sustainable Energy, 2014, 5, 1278-1286.	5.9	14
157	Decision-Making Tree Analysis for Industrial Load Classification in Demand Response Programs. IEEE Transactions on Industry Applications, 2021, 57, 26-35.	3.3	14
158	Reliability-Based Expansion Planning Studies of Active Distribution Networks With Multiagents. IEEE Transactions on Smart Grid, 2022, 13, 4610-4623.	6.2	14
159	Optimum generation dispatching of distributed resources in smart grids. International Transactions on Electrical Energy Systems, 2015, 25, 1297-1318.	1.2	13
160	A hierarchical scheme for outage management in multi-microgrids. International Transactions on Electrical Energy Systems, 2016, 26, 2023-2037.	1.2	13
161	Distribution Grid Flexibility-ramp Minimization using Local Resources. , 2019, , .		13
162	Risk-Based Networked-Constrained Unit Commitment Considering Correlated Power System Uncertainties. IEEE Transactions on Smart Grid, 2020, 11, 1781-1791.	6.2	13

#	Article	IF	CITATIONS
163	Inverse Reliability Evaluation in Power Distribution Systems. IEEE Transactions on Power Systems, 2020, 35, 818-820.	4.6	13
164	A non-iterative approach for AC state estimation using line flow based model. International Journal of Electrical Power and Energy Systems, 2012, 43, 1413-1420.	3.3	12
165	Reliability Analysis of Buck-Boost Converter Considering the Effects of Operational Factors. , 2019, , .		12
166	Incentive-based Ramp-up Minimization in Multi-Microgrid Distribution Systems., 2020,,.		12
167	A Two-Stage Flexibility-Oriented Stochastic Energy Management Strategy for Multi-Microgrids Considering Interaction With Gas Grid. IEEE Transactions on Engineering Management, 2023, 70, 3330-3343.	2.4	12
168	A reliability model for overcurrent relays considering harmonic-related malfunctions. International Journal of Electrical Power and Energy Systems, 2021, 131, 107093.	3.3	12
169	Distributed Transactive Framework for Congestion Management of Multiple-Microgrid Distribution Systems. IEEE Transactions on Smart Grid, 2022, 13, 1335-1346.	6.2	12
170	Optimum simultaneous clearing of energy and spinning reserve markets using cost/benefit analysis. , 2008, , .		11
171	Risk based maintenance optimization of overhead distribution networks utilizing priority based dynamic programming. , 2009, , .		11
172	Optimal Capacity Management of Substation Transformers Over Long-Run. IEEE Transactions on Power Systems, 2016, 31, 632-641.	4.6	11
173	Energy scheduling of a technical virtual power plant in presence of electric vehicles. , 2017, , .		11
174	Hourly electricity and heat Demand Response in the OEF of the integrated electricityâ€heatâ€natural gas system. IET Renewable Power Generation, 2019, 13, 2853-2863.	1.7	11
175	Uncertainty Cost of Stochastic Producers: Metrics and Impacts on Power Grid Flexibility. IEEE Transactions on Engineering Management, 2022, 69, 708-719.	2.4	11
176	Decentralized Active Power Management in Multi-Agent Distribution Systems Considering Congestion Issue. IEEE Transactions on Smart Grid, 2022, 13, 3582-3593.	6.2	11
177	A dynamic thermal based reliability model of cast-resin dry-type transformers. , 2010, , .		10
178	A practical application of the Delphi method in maintenance-targeted resource allocation of distribution utilities. , 2014, , .		10
179	Probabilistic Home Load Controlling Considering Plug-in Hybrid Electric Vehicle Uncertainties. , 2014, , 117-132.		10
180	Designing a new procedure for reward and penalty scheme in performance-based regulation of electricity distribution companies. International Transactions on Electrical Energy Systems, 2018, 28, e2628.	1.2	10

#	Article	IF	CITATIONS
181	Reliability Modeling of Multistate Degraded Power Electronic Converters With Simultaneous Exposure to Dependent Competing Failure Processes. IEEE Access, 2021, 9, 67096-67108.	2.6	10
182	A linearized transmission expansion planning model under <i>N</i> \hat{a} 1 criterion for enhancing grid \hat{a} scale system flexibility via compressed air energy storage integration. IET Generation, Transmission and Distribution, 2022, 16, 208-218.	1.4	10
183	Identification of critical components in power systems: A game theory application. , 2016, , .		9
184	A General Framework for Voltage Sag Performance Analysis of Distribution Networks. Energies, 2019, 12, 2824.	1.6	9
185	Market design for integration of renewables into transactive energy systems. IET Renewable Power Generation, 2019, 13, 2502-2511.	1.7	9
186	An online method for MILP coâ€planning model of largeâ€scale transmission expansion planning and energy storage systems considering Nâ€1 criterion. IET Generation, Transmission and Distribution, 2021, 15, 664-677.	1.4	9
187	A comprehensive approach for reliability worth assessment of the automated fault management schemes. , 2010, , .		8
188	Reliability evaluation in power distribution system planning studies. , 2016, , .		8
189	Multistage Expansion Co-Planning of Integrated Natural Gas and Electricity Distribution Systems. Energies, 2019, 12, 1020.	1.6	8
190	Enhancing electricity market flexibility by deploying ancillary services for flexible ramping product procurement. Electric Power Systems Research, 2021, 191, 106878.	2.1	8
191	Reliability worth assessment of an advanced centralized Feeder Automation scheme. , 2008, , .		7
192	Improving direct load control implementation by an inititative load control method., 2013,,.		7
193	Developing a hierarchical scheme for outage management in multi-microgrids. , 2015, , .		7
194	Optimal allocation of PHEV parking lots to minimize distribution system losses. , 2015, , .		7
195	Electricity distribution grids resilience enhancement by network reconfiguration. International Transactions on Electrical Energy Systems, 2021, 31, e13047.	1.2	7
196	Transactive Energy Management Framework for Active Distribution Systems., 2021,,.		7
197	A New Framework for Mitigating Voltage Regulation Issue in Active Distribution Systems Considering Local Responsive Resources. IEEE Access, 2021, 9, 152585-152594.	2.6	7
198	Incentive-Based Flexible-Ramp-Up Management in Multi-Microgrid Distribution Systems. IEEE Systems Journal, 2022, 16, 5011-5022.	2.9	7

#	Article	IF	Citations
199	A novel approach for assessing the impacts of voltage sag events on customer operations. , 2012, , .		6
200	A new approach for long-term electricity load forecasting. , 2013, , .		6
201	Centralized home energy management in multi-carrier energy frameworks. , 2015, , .		6
202	Energy Management Framework for a TVPP in Active Distribution Network with Diverse DERs. , 2019, , .		6
203	Optimal Placement of Automatic Switching Equipment in Radial Distribution Networks Based on Protective Coordination. Journal of Electrical Engineering and Technology, 2019, 14, 1127-1137.	1.2	6
204	Investigating the Impacts of Microgrids and Gas Grid Interconnection on Power Grid Flexibility. , 2019, , .		6
205	Proof of humanity: A tax-aware society-centric consensus algorithm for Blockchains. Peer-to-Peer Networking and Applications, 2021, 14, 3634-3646.	2.6	6
206	Effect of Interline Power Flow Controller (IPFC) on interconnected power systems adequacy. , 2008, , .		5
207	A fast load shedding algorithm to relieve transmission system overloads. , 2011, , .		5
208	Optimal transmission switching as a remedial action to enhance composite system reliability., 2015,,.		5
209	Developing a stochastic approach for optimal scheduling of isolated microgrids. , 2015, , .		5
210	Optimal transmission switching as a remedial action to enhance power system reliability. , 2016, , .		5
211	Improve capacity utilization of substation transformers via distribution network reconfiguraion and load transfer. , 2016, , .		5
212	Coordinated power system expansion planning considering the DSO's market operations. IET Generation, Transmission and Distribution, 2019, 13, 4987-4997.	1.4	5
213	A Novel Multi-Area Distribution State Estimation Approach for Active Networks. Energies, 2021, 14, 1772.	1.6	5
214	Monthly Electricity Consumption Forecasting: A Step-Reduction Strategy and Autoencoder Neural Network. IEEE Industry Applications Magazine, 2021, 27, 90-102.	0.3	5
215	Optimal In-Home Charge Scheduling of Plug-in Electric Vehicles Incorporating Customer's Payment and Inconvenience Costs. Power Systems, 2015, , 301-326.	0.3	5
216	Thermal analysis of nonâ€isolated conventional PWMâ€based DC–DC converters with reliability consideration. IET Power Electronics, 2021, 14, 337-351.	1.5	5

#	Article	IF	CITATIONS
217	Considering forecasting errors in flexibilityâ€oriented distribution network expansion planning using the spherical simplex unscented transformation. IET Generation, Transmission and Distribution, 2020, 14, 5970-5983.	1.4	5
218	Optimal energy management of distribution networks in post-contingency conditions. International Journal of Electrical Power and Energy Systems, 2022, 141, 108022.	3.3	5
219	Impacts of Loop Restoration Strategy on distribution system reliability., 2009,,.		4
220	Optimal RTU placement in power distribution systems using a novel method based on analytical hierarchical process (AHP). , $2011, , .$		4
221	Optimal selection of voltage sag mitigation solution based on event tree method., 2012,,.		4
222	Optimal charge scheduling of PHEV in a multi-carrier energy home. , 2014, , .		4
223	A Heuristic Ranking Approach on Capacity Benefit Margin Determination Using Pareto-Based Evolutionary Programming Technique. Scientific World Journal, The, 2015, 2015, 1-15.	0.8	4
224	Effects of flexible ramping product on improving power system real-time operation., 2017,,.		4
225	Modeling and Quantification of Power System Resilience to Natural Hazards: A Case of Landslide. IEEE Access, 2021, 9, 80300-80309.	2.6	4
226	Energy and Flexibility Scheduling of DERs under TVPP's Supervision using Market-Based Framework. , 2020, , .		4
227	Location of Unified Power Flow Controller and its Parameters setting for Congestion Management in Pool Market Model Using Genetic Algorithm. , 2006, , .		3
228	Ancillary Service Markets., 2007,,.		3
229	Impacts of service quality regulation on distribution automation investment. , 2010, , .		3
230	A novel voltage and Var control model in distribution networks considering high penetration of renewable energy sources. , 2015, , .		3
231	Short term voltage-based risk assessment by incorporating reactive power adequacy. Ain Shams Engineering Journal, 2016, 7, 131-141.	3.5	3
232	Developing a combinatorial reward–penalty scheme to facilitate integration of distributed generations. CIRED - Open Access Proceedings Journal, 2017, 2017, 2682-2686.	0.1	3
233	Flexibility Scheduling for Large Customers. , 2018, , .		3
234	A Flexibility-Oriented Model for Distribution System Expansion Planning Studies. , 2019, , .		3

#	Article	IF	Citations
235	Investigating the Effects of ESS Technologies on High Wind-Penetration Power Grids Considering Reliability Indices. , 2021, , .		3
236	A new management framework for mitigating intense ramping in distribution systems. Energy, 2022, 254, 124100.	4.5	3
237	A Method to Calculate the Linear Load Pay Back Factors for Air Conditioners. , 2012, , .		2
238	Post Optimal Analysis application on the reliability evaluation of the Iran power grid. , 2012, , .		2
239	Optimizing size and operation of hybrid energy systems. , 2013, , .		2
240	A new approach for AC state estimation based on a linear network model. , 2013, , .		2
241	Charging/discharging management of electric vehicles: technical viewpoint. , 2016, , .		2
242	Optimal scheduling of renewable-based energy hubs considering time-of-use pricing scheme. , 2017, , .		2
243	Developing a MILP Method for Distribution System Reconfiguration After Natural Disasters. , 2018, , .		2
244	Reliability based Joint Distribution Network and Distributed Generation Expansion Planning. , 2020, , .		2
245	Greedy Clustering-based Monthly Electricity Consumption Forecasting Model. , 2021, , .		2
246	A Transactive-Based Control Scheme for Minimizing Real-Time Energy Imbalance in a Multiagent Microgrid: A CVaR-Based Model. IEEE Systems Journal, 2022, 16, 4164-4174.	2.9	2
247	Market based criteria for transmission expansion planning. , 2010, , .		1
248	Reliability worth assessment of an Automatic Loop Restoration Scheme for urban distribution networks. , $2010, , .$		1
249	Incorporating Two-Part Real-Time Pricing Scheme into Distribution System Operation. , 2014, , .		1
250	Incorporating time-varying electricity rates into day-ahead distribution system operation. , 2014, , .		1
251	Flexibility-Oriented Collaborative Planning Model for Distribution Network and EV Parking Lots Considering Uncertain Behaviour of EVs. , 2020, , .		1
252	Reliability incentive regulation based on rewardâ€penalty mechanism using distribution feeders clustering. International Transactions on Electrical Energy Systems, 2021, 31, e12958.	1.2	1

#	Article	IF	Citations
253	Budgetâ€constrained drone allocation for distribution system damage assessment. IET Smart Grid, 0, , .	1.5	1
254	Optimization-Based Distribution System Reliability Evaluation: An Enhanced MILP Model., 2021,,.		1
255	Hybrid AC/DC microgrids flexible reliability index by using the axiomatic design concept. IET Generation, Transmission and Distribution, 2020, 14, 5456-5462.	1.4	1
256	Determining the Optimum Network Division Scheme for Multi-area Distribution System State Estimation. , 2021, , .		1
257	Optimization model of a VPP to provide energy and reserve. , 2022, , 59-109.		1
258	A fuzzy logic based approach to determine system well-being indices. European Transactions on Electrical Power, 2008, 18, 636-654.	1.0	0
259	Impacts of service quality regulation on distribution automation investment. , 2011, , .		0
260	Charging/discharging management of electric vehicles: Technical viewpoint. , 2015, , .		0
261	Developing a multi-objective framework for planning studies of modern distribution networks. , 2016, , .		O
262	The computation of confidence intervals for the state parameters of power systems. SpringerPlus, 2016, 5, 1943.	1.2	0
263	Enhancing Power Distribution System Flexibility Using Electric Vehicle Charging Management. , 2019, , .		0
264	Economic Valuation of Demand Response Programs Using Real Option Valuation Method., 2019,,.		0
265	Management of Flexible Resources for Voltage Regulation of Distribution Systems. , 2021, , .		0
266	Planning a flexible distribution network with energy storage systems considering the uncertainty of renewable sources and demand. CIRED - Open Access Proceedings Journal, 2020, 2020, 132-135.	0.1	0
267	Peer-to-peer management of energy systems. , 2022, , 369-389.		0
268	A Robust MPC Method for Post-Disaster Distribution System Reconfiguration based on Repair Crew Routing. , 2022, , .		0
269	Model-based Reliability-Centered Design of Power Electronics Dominated Microgrids. , 2022, , .		0