Allan Pring

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5032058/publications.pdf

Version: 2024-02-01

149 papers	5,184 citations	36 h-index	98622 67 g-index
151	151	151	4096
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Crystal chemistry of arsenian pyrites: A Raman spectroscopic study. American Mineralogist, 2022, 107, 274-281.	0.9	2
2	Effects of arsenic on the distribution and mode of occurrence of gold during fluid-pyrite interaction: A case study of pyrite from the Qiucun gold deposit, China. American Mineralogist, 2022, 107, 914-929.	0.9	10
3	29Si Solid-State NMR Analysis of Opal-AG, Opal-AN and Opal-CT: Single Pulse Spectroscopy and Spin-Lattice T1 Relaxometry. Minerals (Basel, Switzerland), 2022, 12, 323.	0.8	3
4	Synchronous solid-state diffusion, dissolution-reprecipitation, and recrystallization leading to isotopic resetting: insights from chalcopyrite replacement by copper sulfides. Geochimica Et Cosmochimica Acta, 2022, 331, 48-68.	1.6	8
5	Understanding the mobility and retention of uranium and its daughter products. Journal of Hazardous Materials, 2021, 410, 124553.	6.5	9
6	FRANK REITH (11 June 1972–14 October 2019) The man with the gold bug. Mineralogical Magazine, 2021, 85, 3-11.	0.6	0
7	Oxidative Dissolution of Sulfide Minerals in Single and Mixed Sulfide Systems under Simulated Acid and Metalliferous Drainage Conditions. Environmental Science & Environmental Science & 2021, 55, 2369-2380.	4.6	10
8	Carbonisation of a polymer made from sulfur and canola oil. Chemical Communications, 2021, 57, 6296-6299.	2.2	13
9	Silicon-Oxygen Region Infrared and Raman Analysis of Opals: The Effect of Sample Preparation and Measurement Type. Minerals (Basel, Switzerland), 2021, 11, 173.	0.8	4
10	Phase Analysis of Australian Uranium Ore Concentrates Determined by Variable Temperature Synchrotron Powder X-ray Diffraction. Inorganic Chemistry, 2021, 60, 11569-11578.	1.9	2
11	Radionuclides and stable elements in vegetation in Australian arid environments: Concentration ratios and seasonal variation. Journal of Environmental Radioactivity, 2021, 234, 106627.	0.9	2
12	Coupling between mineral replacement reactions and co-precipitation of trace elements: An example from the giant Olympic Dam deposit. Ore Geology Reviews, 2020, 117, 103267.	1.1	11
13	Atomic Force Microscopy and Raman Microspectroscopy Investigations of the Leaching of Chalcopyrite (112) Surface. Minerals (Basel, Switzerland), 2020, 10, 485.	0.8	5
14	Coupled Substitutions of Minor and Trace Elements in Co-Existing Sphalerite and Wurtzite. Minerals (Basel, Switzerland), 2020, 10, 147.	0.8	19
15	The mechanism and kinetics of the transformation from marcasite to pyrite: in situ and ex situ experiments and geological implications. Contributions To Mineralogy and Petrology, 2020, 175, 1.	1.2	13
16	Mechanism and kinetics of hydrothermal replacement of magnetite by hematite. Geoscience Frontiers, 2019, 10, 29-41.	4.3	51
17	The Combined Effects of Galvanic Interaction and Silicate Addition on the Oxidative Dissolution of Pyrite: Implications for Acid and Metalliferous Drainage Control. Environmental Science & Eamp; Technology, 2019, 53, 11922-11931.	4.6	11

A Review of the Classification of Opal with Reference to Recent New Localities. Minerals (Basel,) Tj ETQq0 0 0 rgBT Overlock 10 Tf 50 6.8

#	Article	IF	CITATIONS
19	Mineral Transformations in Gold–(Silver) Tellurides in the Presence of Fluids: Nature and Experiment. Minerals (Basel, Switzerland), 2019, 9, 167.	0.8	16
20	Exsolution of chalcopyrite from bornite-digenite solid solution: an example of a fluid-driven back-replacement reaction. Mineralium Deposita, 2018, 53, 903-908.	1.7	26
21	Engravings and rock coatings at Pudjinuk Rockshelter No. 2, South Australia. Journal of Archaeological Science: Reports, 2018, 18, 272-284.	0.2	5
22	The Carbonatation of Anhydrite: Kinetics and Reaction Pathways. ACS Earth and Space Chemistry, 2017, 1, 89-100.	1.2	15
23	Fluid-Enhanced Coarsening of Mineral Microstructures in Hydrothermally Synthesized Bornite–Digenite Solid Solution. ACS Earth and Space Chemistry, 2017, 1, 465-474.	1.2	23
24	Chemical and textural interpretation of late-stage coffinite and brannerite from the Olympic Dam IOCG-Ag-U deposit. Mineralogical Magazine, 2017, 81, 1323-1366.	0.6	34
25	Kummerite, Mn2+Fe3+Al(PO4)2(OH)2Â-8H2O, a new laueite-group mineral from the Hagendorf SÃ $\frac{1}{4}$ d pegmatite, Bavaria, with ordering of Al and Fe3+. Mineralogical Magazine, 2016, 80, 1243-1254.	0.6	5
26	Novel application of X-ray fluorescence microscopy (XFM) for the non-destructive micro-elemental analysis of natural mineral pigments on Aboriginal Australian objects. Analyst, The, 2016, 141, 3657-3667.	1.7	13
27	Chemical zoning and lattice distortion in uraninite from Olympic Dam, South Australia. American Mineralogist, 2016, 101, 2351-2354.	0.9	21
28	Replacement of Uraninite By Bornite <i>Via</i> Coupled Dissolution-Reprecipitation: Evidence From Texture and Microstructure. Canadian Mineralogist, 2016, 54, 1369-1383.	0.3	16
29	Uraninite from the Olympic Dam IOCG-U-Ag deposit: Linking textural and compositional variation to temporal evolution. American Mineralogist, 2016, 101, 1295-1320.	0.9	55
30	The role of Te(IV) and Bi(III) chloride complexes in hydrothermal mass transfer: An X-ray absorption spectroscopic study. Chemical Geology, 2016, 425, 37-51.	1.4	35
31	Ore Petrography Using Megapixel X-Ray Imaging: Rapid Insights into Element Distribution and Mobilization in Complex Pt and U-Ge-Cu Ores. Economic Geology, 2016, 111, 487-501.	1.8	32
32	A multidisciplinary investigation of a rock coating at Ngaut Ngaut (Devon Downs), South Australia. Australian Archaeology, 2015, 80, 32-39.	0.3	16
33	Distribution and Substitution Mechanism of Ge in a Ge-(Fe)-Bearing Sphalerite. Minerals (Basel,) Tj ETQq1 1 0.784	314 rgBT .	/Qyerlock 1
34	Effect of manganese oxide minerals and complexes on gold mobilization and speciation. Chemical Geology, 2015, 407-408, 10-20.	1.4	18
35	Microelemental characterisation of Aboriginal Australian natural Fe oxide pigments. Analytical Methods, 2015, 7, 7363-7380.	1.3	8
36	Textural and compositional complexities resulting from coupled dissolution–reprecipitation reactions in geomaterials. Earth-Science Reviews, 2015, 150, 628-651.	4.0	115

#	Article	IF	Citations
37	Uranium scavenging during mineral replacement reactions. American Mineralogist, 2015, 100, 1728-1735.	0.9	22
38	Characterisation of coarse composite sphalerite particles with respect to flotation. Minerals Engineering, 2015, 71, 105-112.	1.8	9
39	Determining the origins of particulates on Arkaroo Rock art. Open Journal of Archaeometry, 2014, 2, .	0.2	O
40	Barlowite, Cu ₄ FBr(OH) ₆ , a new mineral isotructural with claringbullite: description and crystal structure. Mineralogical Magazine, 2014, 78, 1755-1762.	0.6	21
41	Minerals of the Wooltana Cave, Flinders Ranges, South Australia. Transactions of the Royal Society of South Australia, 2014, 138, 214-230.	0.1	15
42	Characterization of porosity in sulfide ore minerals: A USANS/SANS study. American Mineralogist, 2014, 99, 2398-2404.	0.9	18
43	The replacement of chalcopyrite by bornite under hydrothermal conditions. American Mineralogist, 2014, 99, 2389-2397.	0.9	44
44	Experimental study of the formation of chalcopyrite and bornite via the sulfidation of hematite: Mineral replacements with a large volume increase. American Mineralogist, 2014, 99, 343-354.	0.9	39
45	Putnisite, SrCa ₄ Cr ₈ ³⁺ (CO ₃) ₈ SO ₄ (OH) ₁₆ ·25H ₂ O, a new mineral from Western Australia: description and crystal structure. Mineralogical Magazine, 2014, 78, 131-144.	0.6	5
46	Platinum in Earth surface environments. Earth-Science Reviews, 2014, 131, 1-21.	4.0	80
47	HyLoggerâ,,¢ near-infrared spectral analysis: a non-destructive mineral analysis of Aboriginal Australian objects. Analytical Methods, 2014, 6, 1309-1316.	1.3	9
48	Microporous gold: Comparison of textures from Nature and experiments. American Mineralogist, 2014, 99, 1171-1174.	0.9	20
49	Analysis of Gold(I/III)-Complexes by HPLC-ICP-MS Demonstrates Gold(III) Stability in Surface Waters. Environmental Science & E	4.6	53
50	Speciation of aqueous tellurium(IV) in hydrothermal solutions and vapors, and the role of oxidized tellurium species in Te transport and gold deposition. Geochimica Et Cosmochimica Acta, 2013, 120, 298-325.	1.6	117
51	Dissolution-reprecipitation vs. solid-state diffusion: Mechanism of mineral transformations in sylvanite, (AuAg)2Te4, under hydrothermal conditions. American Mineralogist, 2013, 98, 19-32.	0.9	49
52	Formation of As(II)-pyrite during experimental replacement of magnetite under hydrothermal conditions. Geochimica Et Cosmochimica Acta, 2013, 100, 1-10.	1.6	60
53	Hylbrownite, Na3MgP3O10·12H2O, a new triphosphate mineral from the Dome Rock Mine, South Australia: description and crystal structure. Mineralogical Magazine, 2013, 77, 385-398.	0.6	5
54	Mechanism of mineral transformations in krennerite, Au3AgTe8, under hydrothermal conditions. American Mineralogist, 2013, 98, 2086-2095.	0.9	14

#	Article	IF	Citations
55	Comparison of the relative comparator and k0 neutron activation analysis techniques for the determination of trace-element concentrations in pyrite. Mineralogical Magazine, 2012, 76, 1229-1245.	0.6	1
56	XAS evidence for the stability of polytellurides in hydrothermal fluids up to 599 ÂC, 800 bar. American Mineralogist, 2012, 97, 1519-1522.	0.9	24
57	Veatchite: Structural relationships of the three polytypes. American Mineralogist, 2012, 97, 489-495.	0.9	13
58	Understanding the mechanism and kinetics of pentlandite oxidation in extractive pyrometallurgy of nickel. Minerals Engineering, 2012, 27-28, 11-19.	1.8	22
59	Single-pass flow-through reaction cell for high-temperature and high-pressurein situneutron diffraction studies of hydrothermal crystallization processes. Journal of Applied Crystallography, 2012, 45, 166-173.	1.9	6
60	Evaluation of relative comparator and k 0-NAA for characterization of Aboriginal Australian ochre. Journal of Radioanalytical and Nuclear Chemistry, 2012, 291, 19-24.	0.7	23
61	A LA-ICP-MS sulphide calibration standard based on a chalcogenide glass. Mineralogical Magazine, 2011, 75, 279-287.	0.6	17
62	Replacement of pyrrhotite by pyrite and marcasite under hydrothermal conditions up to 220 ÂC: An experimental study of reaction textures and mechanisms. American Mineralogist, 2011, 96, 1878-1893.	0.9	71
63	Nordgauite, MnAl ₂ (PO ₄) ₂ (F,OH) ₂ ·5H ₂ O, a new mineral from the Hagendorf-Sù¼d pegmatite, Bavaria, Germany: description and crystal structure. Mineralogical Magazine, 2011, 75, 269-278.	0.6	15
64	Paulscherrerite from the Number 2 Workings, Mount Painter Inlier, Northern Flinders Ranges, South Australia: "Dehydrated schoepite" is a mineral after all. American Mineralogist, 2011, 96, 229-240.	0.9	30
65	Focussed ion beam–transmission electron microscopy applications in ore mineralogy: Bridging microand nanoscale observations. Ore Geology Reviews, 2011, 42, 6-31.	1.1	105
66	The crystal structure of gatehouseite. Mineralogical Magazine, 2011, 75, 2823-2832.	0.6	2
67	A Novel Route for the Synthesis of Mesoporous and Low-Thermal Stability Materials by Coupled Dissolution-Reprecipitation Reactions: Mimicking Hydrothermal Mineral Formation. Chimia, 2010, 64, 693.	0.3	26
68	Townendite, Na8ZrSi6O18, a new uranium-bearing lovozerite group mineral from the Ilimaussaq alkaline complex, Southern Greenland. American Mineralogist, 2010, 95, 646-650.	0.9	5
69	A novel pre-treatment of calaverite by hydrothermal mineral replacement reactions. Minerals Engineering, 2010, 23, 451-453.	1.8	21
70	Petrogenetic significance of Au–Bi–Te–S associations: The example of Maldon, Central Victorian gold province, Australia. Lithos, 2010, 116, 1-17.	0.6	97
71	Probing ore deposits formation: New insights and challenges from synchrotron and neutron studies. Radiation Physics and Chemistry, 2010, 79, 151-161.	1.4	58
72	A thermosyphon-driven hydrothermal flow-through cell forin situand time-resolved neutron diffraction studies. Journal of Applied Crystallography, 2010, 43, 511-519.	1.9	12

#	Article	IF	CITATIONS
73	Syntheses and Crystallization of Mineralogically Relevant Chalcogenide Glasses. Journal of the American Ceramic Society, 2010, 93, 2434-2437.	1.9	2
74	Nanoparticle factories: Biofilms hold the key to gold dispersion and nugget formation. Geology, 2010, 38, 843-846.	2.0	137
75	Alunite supergroup: recommended nomenclature. Mineralogical Magazine, 2010, 74, 919-927.	0.6	112
76	An experimental study of the mechanism of the replacement of magnetite by pyrite up to $300 {\hat A}^{\circ} C$. Geochimica Et Cosmochimica Acta, 2010, 74, 5610-5630.	1.6	69
77	Towards the identification of plant and animal binders on Australian stone knives. Talanta, 2010, 82, 745-750.	2.9	11
78	A simple colorimetric FIA method for the determination of pyrite oxidation rates. Talanta, 2010, 82, 1809-1813.	2.9	7
79	Coulsellite, CaNa3AlMg3F14, a rhombohedral pyrochlore with 1:3 ordering in both A and B sites, from the Cleveland Mine, Tasmania, Australia. American Mineralogist, 2010, 95, 736-740.	0.9	9
80	Kapundaite, (Na,Ca)2Fe43+(PO4)4(OH)3{middle dot}5H2O, a new phosphate species from Toms quarry, South Australia: Description and structural relationship to melonjosephite. American Mineralogist, 2010, 95, 754-760.	0.9	13
81	A large volume cell for in situ neutron diffraction studies of hydrothermal crystallizations. Review of Scientific Instruments, 2010, 81, 105107.	0.6	7
82	Mechanism and kinetics of a mineral transformation under hydrothermal conditions: Calaverite to metallic gold. American Mineralogist, 2009, 94, 1541-1555.	0.9	64
83	Chemical-structural modularity in the tetradymite group: A HRTEM study. American Mineralogist, 2009, 94, 517-534.	0.9	33
84	Invisible gold in arsenian pyrite and arsenopyrite from a multistage Archaean gold deposit: Sunrise Dam, Eastern Goldfields Province, Western Australia. Mineralium Deposita, 2009, 44, 765-791.	1.7	227
85	Mechanisms of gold biomineralization in the bacterium <i>Cupriavidus metallidurans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17757-17762.	3.3	283
86	Effect of the cyanide-producing bacterium Chromobacterium violaceum on ultraflat Au surfaces. Chemical Geology, 2009, 265, 313-320.	1.4	48
87	â€~Invisible gold' in bismuth chalcogenides. Geochimica Et Cosmochimica Acta, 2009, 73, 1970-1999.	1.6	106
88	Mechanism and kinetics of pseudomorphic mineral replacement reactions: A case study of the replacement of pentlandite by violarite. Geochimica Et Cosmochimica Acta, 2009, 73, 1945-1969.	1.6	193
89	Electronic environments in carrollite, CuCo2S4, determined by soft X-ray photoelectron and absorption spectroscopy. Geochimica Et Cosmochimica Acta, 2009, 73, 4452-4467.	1.6	35
90	Trace and minor elements in sphalerite: A LA-ICPMS study. Geochimica Et Cosmochimica Acta, 2009, 73, 4761-4791.	1.6	581

#	Article	IF	CITATIONS
91	Three-Dimensional Ordered Arrays of Zeolite Nanocrystals with Uniform Size and Orientation by a Pseudomorphic Coupled Dissolutionâ´'Reprecipitation Replacement Route. Crystal Growth and Design, 2009, 9, 4902-4906.	1.4	64
92	Description and crystal structure of a new mineral – plimerite, ZnFe3+4(PO4)3(OH)5 – the Zn-analogue of rockbridgeite and frondelite, from Broken Hill, New South Wales, Australia. Mineralogical Magazine, 2009, 73, 131-148.	0.6	14
93	Description and crystal structure of nyholmite, a new mineral related to hureaulite, from Broken Hill, New South Wales, Australia. Mineralogical Magazine, 2009, 73, 723-735.	0.6	6
94	Daliranite, PbHgAs ₂ S ₆ , a new sulphosalt from the Zarshouran Au-As deposit, Takab region, Iran. Mineralogical Magazine, 2009, 73, 871-881.	0.6	7
95	The mineralogy of the Yaringie Hill meteoriteâ€"A new H5 chondrite from South Australia. Meteoritics and Planetary Science, 2009, 44, 1687-1693.	0.7	0
96	Ernest Henry Nickel 1925-2009. Mineralogical Magazine, 2009, 73, 891-892.	0.6	O
97	Another look at nagy \tilde{A} ; gite from the type locality, S \$check{m{a}}\$ c \$check{m{a}}\$ r \tilde{A} mb, Romania: Replacement, chemical variation and petrogenetic implications. Mineralogy and Petrology, 2008, 93, 273-307.	0.4	23
98	Crystal chemistry of mimetite, Pb ₁₀ (AsO ₄) ₆ Cl _{1.48} O _{0.26} , and finnemanite, Pb ₁₀ (AsO ₃) ₆ Cl ₂ . Acta Crystallographica Section B: Structural Science, 2008, 64, 34-41.	1.8	13
99	Sulfosalt systematics: a review. Report of the sulfosalt sub-committee of the IMA Commission on Ore Mineralogy. European Journal of Mineralogy, 2008, 20, 7-62.	0.4	253
100	Birchite, a new mineral from Broken Hill, New South Wales, Australia: Description and structure refinement. American Mineralogist, 2008, 93, 910-917.	0.9	7
101	The crystal chemistry of Al-bearing goethites: an infrared spectroscopic study. Mineralogical Magazine, 2008, 72, 1043-1056.	0.6	33
102	The crystal chemistry of Fe-bearing sphalerites: An infrared spectroscopic study. American Mineralogist, 2008, 93, 591-597.	0.9	31
103	Novel Route To Synthesize Complex Metal Sulfides: Hydrothermal Coupled Dissolutionâ^'Reprecipitation Replacement Reactions. Chemistry of Materials, 2008, 20, 2809-2817.	3.2	63
104	THE FORMATION OF PRECIOUS OPAL: CLUES FROM THE OPALIZATION OF BONE. Canadian Mineralogist, 2008, 46, 139-149.	0.3	25
105	REED S. J. B. 2005. Electron Microprobe Analysis and Scanning Electron Microscopy in Geology, 2nd ed. xiii + 192 pp. Cambridge, New York, Melbourne: Cambridge University Press. Price £35.00, US \$70.00 (hard) Tj El	Γ Q.φ 1 1	0.7 8 4314 rgB
106	Examination of the proposition that Cu(II) can be required for charge neutrality in a sulfide lattice — Cu in tetrahedrites and sphalerite. Canadian Journal of Chemistry, 2007, 85, 767-781.	0.6	44
107	Autocorrelation infrared analysis of mineralogical samples: The influence of user controllable experimental parameters. Analytica Chimica Acta, 2007, 590, 145-150.	2.6	9
108	The role of pyrrhotite (Fe7S8) and the sample texture in the hydrothermal transformation of pentlandite ((Fe,Ni)9S8) to violarite ((Ni,Fe)3S4). Reaction Kinetics and Catalysis Letters, 2007, 92, 257-266.	0.6	21

#	Article	IF	CITATIONS
109	Paratooite-(La), a new lanthanum-dominant rare-earth copper carbonate from Paratoo, South Australia. Mineralogical Magazine, 2006, 70, 131-138.	0.6	6
110	Effect of cation vacancy and crystal superstructure on thermodynamics of iron monosulfides. Journal of Sulfur Chemistry, 2006, 27, 271-282.	1.0	13
111	Transformation of pentlandite to violarite under mild hydrothermal conditions. American Mineralogist, 2006, 91, 706-709.	0.9	56
112	Sulfur electronic environments in \hat{l}_{\pm} -NiS and \hat{l}_{\pm} -NiS: examination of the relationship between coordination number and core electron binding energies. Physics and Chemistry of Minerals, 2006, 33, 98-105.	0.3	15
113	A flow-through hydrothermal cell for in situ neutron diffraction studies of phase transformations. Physica B: Condensed Matter, 2006, 385-386, 942-945.	1.3	10
114	Pseudojohannite from Jachymov, Musonoi, and La Creusaz: A new member of the zippeite-group. American Mineralogist, 2006, 91, 929-936.	0.9	23
115	DEER, W. A., HOWIE, R. A., WISE W. S. & ZUSSMAN, J. 2004. Rock-Forming Minerals. Volume 4B. Framework Silicates: Silica Minerals. Feldspathoids and the Zeolites, 2nd ed. xv + 982 pp. London, Bath: Geological Society of London. Price £125.00, US \$209.00; GSL/IGI members' price £62.50, US \$104.00; AAPG/SEPM/GSA/RAS members' price £75.00, US \$125.00 (hard covers). ISBN 1862391440. Geological	0.9	1
116	A neutron powder diffraction study of Fe and Ni distributions in synthetic pentlandite and violarite using 60Ni isotope. American Mineralogist, 2006, 91, 1442-1447.	0.9	23
117	The mechanism and kinetics of Â-NiS oxidation in the temperature range 670-700 ÂC. American Mineralogist, 2006, 91, 537-543.	0.9	8
118	The kinetics of the $\hat{l}\pm\hat{a}\dagger\hat{'}\hat{l}^2$ transition in synthetic nickel monosulfide. American Mineralogist, 2006, 91, 171-181.	0.9	24
119	â€~Soft' phonon modes, structured diffuse scattering and the crystal chemistry of Fe-bearing sphalerites. Journal of Solid State Chemistry, 2005, 178, 655-660.	1.4	7
120	Phase evolution and kinetics of the oxidation of monosulfide solid solution under isothermal conditions. Thermochimica Acta, 2005, 427, 13-25.	1.2	18
121	A low-temperature kinetic study of the exsolution of pentlandite from the monosulfide solid solution using a refined Avrami method. Geochimica Et Cosmochimica Acta, 2005, 69, 415-425.	1.6	42
122	X-ray diffraction evidence for a monoclinic form of stibnite, Sb ₂ S ₃ , below 290 K. American Mineralogist, 2004, 89, 1022-1025.	0.9	8
123	A kinetic study of the exsolution of pentlandite (Ni, Fe)9S8from the monosulfide solid solution (Fe,) Tj ETQq $1\ 1\ 0$	0.784314	rgBT /Overlo
124	The origin of the color of pearls in iridescence from nano-composite structures of the nacre. American Mineralogist, 2004, 89, 1353-1358.	0.9	81
125	Micron- to nano-scale intergrowths among members of the cuprobismutite series and padÄraite: HRTEM and microanalytical evidence. Mineralogical Magazine, 2004, 68, 279-300.	0.6	16
126	THE NETWORK OF HYDROGEN BONDING IN KINGITE, AS REVEALED BY A NEUTRON-DIFFRACTION INVESTIGATION OF ITS DEUTERATED ANALOGUE, Al3(PO4)2F3{middle dot}7D2O. Canadian Mineralogist, 2004, 42, 135-141.	0.3	12

#	Article	IF	CITATIONS
127	A model for the structure of the hydrated aluminum phosphate, kingite determined by ab initio powder diffraction methods. American Mineralogist, 2003, 88, 235-239.	0.9	9
128	Decrespignyite-(Y), a new copper yttrium rare earth carbonate chloride hydrate from Paratoo, South Australia. Mineralogical Magazine, 2002, 66, 181-188.	0.6	15
129	AOKI, H., SYONO, Y. & HEMLEY, R. J. 2000. Physics Meets Mineralogy. Condensed-Matter Physics in Geosciences. xviii + 397 pp. Cambridge, New York, Melbourne, Madrid: Cambridge University Press. Price £65.00, US \$100.00 (hard covers). ISBN 0 521 64342 2 Geological Magazine, 2002, 139, 719-723.	0.9	O
130	Crystal chemistry of the crandallite, beudantite and alunite groups: a review and evaluation of the suitability as storage materials for toxic metals. Journal of Mineralogical and Petrological Sciences, 2001, 96, 67-78.	0.4	75
131	Hinsdalite and plumbogummite, their atomic arrangements and disordered lead sites. European Journal of Mineralogy, 1999, 11, 513-520.	0.4	43
132	A convenient hydrothermal route for the synthesis of MxVOPO4·yH2O (M=Na and K). Solid State lonics, 1998, 107, 53-57.	1.3	8
133	The crystal chemistry of duftite, PbCuAsO4(OH) and the β-duftite problem. Mineralogical Magazine, 1998, 62, 121-130.	0.6	22
134	Bamfordite, Fe (super 3+) Mo ₂ O ₆ (OH) ₃ .H ₂ O, a new hydrated iron molybdenum oxyhydroxide from Queensland, Australia; description and crystal chemistry. American Mineralogist, 1998, 83, 172-177.	0.9	8
135	HARLOW, G. E. (ed.) 1997. The Nature of Diamonds. x + 278 pp. Cambridge, New York, Port Chester, Melbourne, Sydney: Cambridge University Press. Price £55.00, US \$74.95 (hard covers); £19.95, US \$29.95 (paperback). ISBN 0 521 62083 X; 0 521 62935 7 (pb) Geological Magazine, 1998, 135, 723-732.	0.9	0
136	A. S. Marfunin, (ed.) 1995. Methods and Instrumentations. Results and Recent Developments. Advanced Mineralogy Series Volume 2. xvi + 441 pp. Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong: Springer-Verlag. Price DM 198.00, Ös 1544.40, SFr 187.00 (hard covers). ISBN 3 540 57255 4 Geological Magazine, 1996, 133, 352-353.	0.9	0
137	The magnetic structure of bernalite, Fe(OH)3. Journal of Magnetism and Magnetic Materials, 1996, 152, 33-39.	1.0	15
138	Title is missing!. Geological Magazine, 1996, 133, 229-230.	0.9	0
139	Guest Editorial: The Place of Descriptive Mineralogy in Modern Science. Rocks and Minerals, 1996, 71, 158-162.	0.0	2
140	Meurigite, a new fibrous iron phosphate resembling kidwellite. Mineralogical Magazine, 1996, 60, 787-793.	0.6	13
141	The crystal structure of carminite: refinement and bond valence calculations. Mineralogical Magazine, 1996, 60, 805-811.	0.6	11
142	Annealing of synthetic hammarite, Cu ₂ Pb ₂ Bi ₄ S ₉ , and the nature of cation-ordering processes in the bismuthinite-aikinite series. American Mineralogist, 1995, 80, 1166-1173.	0.9	23
143	A new family of layered lanthanide iron tungstates (Ln2W4O15)·n(Fe2W2O9). Journal of Materials Chemistry, 1995, 5, 777-780.	6.7	0
144	Wycheproofite: a new hydrated sodium aluminium zirconium phosphate from Wycheproof, Victoria, Australia, and a new occurrence of kosnarite. Mineralogical Magazine, 1994, 58, 635-639.	0.6	8

Allan Pring

#	Article	IF	CITATIONS
145	Title is missing!. Geological Magazine, 1994, 131, 854-854.	0.9	0
146	Synthesis, Structure, and Reactivity of Novel Lanthanum Tungstates. Journal of Solid State Chemistry, 1994, 111, 128-133.	1.4	46
147	Classification of Streaky Bay, Mangalo, Ethiudna and Crockers Well: Stony meteorites from South Australia. Meteoritics, 1991, 26, 250-250.	1.5	0
148	The Loxton meteorite: A new olivineâ€bronzite chondrite from South Australia. Meteoritics, 1990, 25, 343-343.	1.5	0
149	The crystal structure of ethyl-Z-3-amino-2-benzoyl-2-butenoate and measurement of the barrier to E,Z-isomerization. Canadian Journal of Chemistry, 1980, 58, 1821-1828.	0.6	2