David E Fisher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5031828/publications.pdf

Version: 2024-02-01

195 papers 27,750 citations

78 h-index

7096

161 g-index

202 all docs 202 docs citations

202 times ranked $\begin{array}{c} 29827 \\ \text{citing authors} \end{array}$

#	Article	IF	CITATIONS
1	Dual Targeting with EZH2 Inhibitor and STING Agonist to Treat Melanoma. Journal of Investigative Dermatology, 2022, 142, 1004-1006.	0.7	2
2	Melanocortin 1 receptor activation protects against alpha-synuclein pathologies in models of Parkinson's disease. Molecular Neurodegeneration, 2022, 17, 16.	10.8	8
3	Topical therapy for regression and melanoma prevention of congenital giant nevi. Cell, 2022, 185, 2071-2085.e12.	28.9	13
4	Treatment of Advanced Melanoma in 2020 and Beyond. Journal of Investigative Dermatology, 2021, 141, 23-31.	0.7	193
5	Skin pigmentation and its control: From ultraviolet radiation to stem cells. Experimental Dermatology, 2021, 30, 560-571.	2.9	74
6	Biology of Melanoma. Hematology/Oncology Clinics of North America, 2021, 35, 29-56.	2.2	40
7	The State of Melanoma: Emergent Challenges and Opportunities. Clinical Cancer Research, 2021, 27, 2678-2697.	7. O	53
8	Epitope spreading toward wild-type melanocyte-lineage antigens rescues suboptimal immune checkpoint blockade responses. Science Translational Medicine, 2021, 13, .	12.4	54
9	The Melanocyte Lineage Factor miR-211 Promotes BRAFV600E Inhibitor Resistance. Journal of Investigative Dermatology, 2021, 141, 250-252.	0.7	1
10	Stressâ€associated ectopic differentiation of melanocyte stem cells and ORS amelanotic melanocytes in an ex vivo human hair follicle model. Experimental Dermatology, 2021, 30, 578-587.	2.9	12
11	CYP27A1-dependent anti-melanoma activity of limonoid natural products targets mitochondrial metabolism. Cell Chemical Biology, 2021, 28, 1407-1419.e6.	5.2	11
12	Reduced MC4R signaling alters nociceptive thresholds associated with red hair. Science Advances, 2021, 7, .	10.3	7
13	Epitope Spreading and the Efficacy of Immune Checkpoint Inhibition in Cancer. International Journal of Oncology Research, 2021, 4, .	0.1	2
14	Vitamin D deficiency exacerbates UV/endorphin and opioid addiction. Science Advances, 2021, 7, .	10.3	16
15	NNT mediates redox-dependent pigmentation via a UVB- and MITF-independent mechanism. Cell, 2021, 184, 4268-4283.e20.	28.9	35
16	MFN2 Stabilization: A Bridge for Endoplasmic Reticulum Stress Sensitivity in Melanoma. Journal of Investigative Dermatology, 2021, 141, 2782-2784.	0.7	0
17	Melanocortin 1 receptor is dispensable for acute stress induced hair graying in mice. Experimental Dermatology, 2021, 30, 572-577.	2.9	6
18	G9a: An Emerging Epigenetic Target for Melanoma Therapy. Epigenomes, 2021, 5, 23.	1.8	8

#	Article	IF	CITATIONS
19	SOX10 Regulates Melanoma Immunogenicity through an IRF4–IRF1 Axis. Cancer Research, 2021, 81, 6131-6141.	0.9	31
20	Commentary on NNT Mediates Redox-Dependent Pigmentation a UVB-And MITF-Independent Mechanism Journal of Cell Science & Therapy, 2021, 12, .	0.3	0
21	A ROCK inhibitor promotes keratinocyte survival and paracrine secretion, enhancing establishment of primary human melanocytes and melanocyte–keratinocyte coâ€cultures. Pigment Cell and Melanoma Research, 2020, 33, 16-29.	3.3	7
22	Hormones and Hormone Precursors of the Skin. , 2020, , 531-556.		1
23	Hdac3 is an epigenetic inhibitor of the cytotoxicity program in CD8 T cells. Journal of Experimental Medicine, 2020, 217, .	8.5	28
24	Perioperative Serum 25-Hydroxyvitamin D Levels as a Predictor of Postoperative Opioid Use and Opioid Use Disorder: a Cohort Study. Journal of General Internal Medicine, 2020, 35, 2545-2552.	2.6	7
25	Topical treatment strategies to manipulate human skin pigmentation. Advanced Drug Delivery Reviews, 2020, 153, 65-71.	13.7	35
26	FOXD3 Regulates VISTA Expression in Melanoma. Cell Reports, 2020, 30, 510-524.e6.	6.4	42
27	Hyperactivation of sympathetic nerves drives depletion of melanocyte stem cells. Nature, 2020, 577, 676-681.	27.8	158
28	Rational Combination Therapy for Melanoma with Dinaciclib by Targeting BAK-Dependent Cell Death. Molecular Cancer Therapeutics, 2020, 19, 627-636.	4.1	10
29	Gain-of-Function Genetic Alterations of G9a Drive Oncogenesis. Cancer Discovery, 2020, 10, 980-997.	9.4	44
30	Biology of Melanocytes and Primary Melanoma. , 2020, , 3-40.		4
31	Neural crest state activation in NRAS driven melanoma, but not in NRAS-driven melanocyte expansion. Developmental Biology, 2019, 449, 107-114.	2.0	19
32	<scp>MITF</scp> and <scp>UV</scp> responses in skin: From pigmentation to addiction. Pigment Cell and Melanoma Research, 2019, 32, 224-236.	3.3	84
33	The Biology of Pigmentation. , 2019, , 21-50.		0
34	Sun exposure and protection practices in children after allogeneic hematopoietic stem cell transplantation: A Surveyâ∈Based Crossâ∈Sectional Cohort Study. Pediatric Dermatology, 2019, 36, 882-886.	0.9	0
35	Intratumoral Activity of the CXCR3 Chemokine System Is Required for the Efficacy of Anti-PD-1 Therapy. Immunity, 2019, 50, 1498-1512.e5.	14.3	406
36	Cell-state dynamics and therapeutic resistance in melanoma from the perspective of MITF and IFNÎ ³ pathways. Nature Reviews Clinical Oncology, 2019, 16, 549-562.	27.6	72

#	Article	IF	CITATIONS
37	Destabilization of NOXA mRNA as a common resistance mechanism to targeted therapies. Nature Communications, 2019, 10, 5157.	12.8	46
38	Local genomic features predict the distinct and overlapping binding patterns of the bHLHâ€Zip family oncoproteins MITF and MYCâ€MAX. Pigment Cell and Melanoma Research, 2019, 32, 500-509.	3.3	13
39	The IncRNA RMEL3 protects immortalized cells from serum withdrawalâ€induced growth arrest and promotes melanoma cell proliferation and tumor growth. Pigment Cell and Melanoma Research, 2019, 32, 303-314.	3.3	17
40	Microphthalmiaâ€associated transcription factor phosphorylation: Cross talk between GSK3 and MAPK signaling. Pigment Cell and Melanoma Research, 2019, 32, 345-347.	3.3	3
41	Lineage-specific control of TFIIH by MITF determines transcriptional homeostasis and DNA repair. Oncogene, 2019, 38, 3616-3635.	5.9	17
42	Chemoprevention agents for melanoma: A path forward into phase 3 clinical trials. Cancer, 2019, 125, 18-44.	4.1	29
43	Biology of Melanocytes and Primary Melanoma. , 2019, , 1-38.		0
44	Nonmalignant late cutaneous changes after allogeneic hematopoietic stem cell transplant in children. Journal of the American Academy of Dermatology, 2018, 79, 230-237.	1.2	7
45	MSX1-Induced Neural Crest-Like Reprogramming Promotes MelanomaÂProgression. Journal of Investigative Dermatology, 2018, 138, 141-149.	0.7	29
46	miRNA-211 stops the clock. Non-coding RNA Investigation, 2018, 2, 25-25.	0.6	1
47	GENE-18. DIVERGENT CLONAL EVOLUTION OF MELANOMA BRAIN METASTASES DURING TREATMENT WITH IMMUNOTHERAPY. Neuro-Oncology, 2018, 20, vi106-vi107.	1.2	0
48	ROCK inhibitor enhances the growth and migration of BRAFâ€mutant skin melanoma cells. Cancer Science, 2018, 109, 3428-3437.	3.9	36
49	Targeting the (Un)differentiated State of Cancer. Cancer Cell, 2018, 33, 793-795.	16.8	5
50	Pathways in melanoma development. Italian Journal of Dermatology and Venereology, 2018, 153, 68-76.	0.2	4
51	Salt-Inducible Kinases: Physiology, Regulation by cAMP, and Therapeutic Potential. Trends in Endocrinology and Metabolism, 2018, 29, 723-735.	7.1	92
52	The Biology of Pigmentation. , 2018, , 1-30.		1
53	The master role of microphthalmia-associated transcription factor in melanocyte and melanoma biology. Laboratory Investigation, 2017, 97, 649-656.	3.7	197
54	Tfe3 and Tfeb Transcriptionally Regulate Peroxisome Proliferator-Activated Receptor \hat{I}^3 2 Expression in Adipocytes and Mediate Adiponectin and Glucose Levels in Mice. Molecular and Cellular Biology, 2017, 37, .	2.3	17

#	Article	IF	CITATIONS
55	Feasibility of Ultra-High-Throughput Functional Screening of Melanoma Biopsies for Discovery of Novel Cancer Drug Combinations. Clinical Cancer Research, 2017, 23, 4680-4692.	7. O	8
56	The Alkylating Chemotherapeutic Temozolomide Induces Metabolic Stress in ⟨i⟩IDH1⟨/i⟩-Mutant Cancers and Potentiates NAD+ Depletion–Mediated Cytotoxicity. Cancer Research, 2017, 77, 4102-4115.	0.9	74
57	Immune and molecular correlates in melanoma treated with immune checkpoint blockade. Cancer, 2017, 123, 2143-2153.	4.1	119
58	A UV-Independent Topical Small-Molecule Approach for Melanin Production in Human Skin. Cell Reports, 2017, 19, 2177-2184.	6.4	59
59	The melanomaâ€linked "redhead― <i>MC1R</i> influences dopaminergic neuron survival. Annals of Neurology, 2017, 81, 395-406.	5 . 3	41
60	MYO5A Gene Is a Target of MITF inÂMelanocytes. Journal of Investigative Dermatology, 2017, 137, 985-989.	0.7	9
61	Signaling and Immune Regulation in Melanoma Development and Responses to Therapy. Annual Review of Pathology: Mechanisms of Disease, 2017, 12, 75-102.	22.4	30
62	In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature, 2017, 547, 413-418.	27.8	792
63	Topical ROR Inverse Agonists Suppress Inflammation in Mouse Models of Atopic Dermatitis and Acute Irritant Dermatitis. Journal of Investigative Dermatology, 2017, 137, 2523-2531.	0.7	32
64	Hair repigmentation associated with the use of brentuximab. JAAD Case Reports, 2017, 3, 563-565.	0.8	9
65	Negative Regulation of Skin Pigmentation in Three-Dimensional Reconstructs by Adipose-Derived Mesenchymal Cells. Journal of Investigative Dermatology, 2017, 137, 2464-2466.	0.7	1
66	Stem cell-released oncolytic herpes simplex virus has therapeutic efficacy in brain metastatic melanomas. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6157-E6165.	7.1	90
67	Non-Euclidean phasor analysis for quantification of oxidative stress in ex vivo human skin exposed to sun filters using fluorescence lifetime imaging microscopy. Journal of Biomedical Optics, 2017, 22, 1.	2.6	17
68	Transcriptional Regulation in Melanoma. , 2017, , 95-117.		0
69	Inhibition of Cell Proliferation in an NRAS Mutant Melanoma Cell Line by Combining Sorafenib and α-Mangostin. PLoS ONE, 2016, 11, e0155217.	2.5	14
70	In vivo coherent Raman imaging of the melanomagenesis-associated pigment pheomelanin. Scientific Reports, 2016, 6, 37986.	3.3	33
71	Red Hair, Light Skin, and UV-Independent Risk for Melanoma Development in Humans. JAMA Dermatology, 2016, 152, 751.	4.1	24
72	Metastatic melanoma and immunotherapy. Clinical Immunology, 2016, 172, 105-110.	3.2	43

#	Article	IF	CITATIONS
73	The state of melanoma: challenges and opportunities. Pigment Cell and Melanoma Research, 2016, 29, 404-416.	3.3	77
74	Bioinformatic Analysis of Gene Expression for Melanoma Treatment. Journal of Investigative Dermatology, 2016, 136, 2342-2344.	0.7	6
75	A phase I trial of panobinostat (<scp>LBH</scp> 589) in patients with metastatic melanoma. Cancer Medicine, 2016, 5, 3041-3050.	2.8	51
76	Immunotherapy in the Precision Medicine Era: Melanoma and Beyond. PLoS Medicine, 2016, 13, e1002196.	8.4	21
77	Genome-Wide DNA Methylation Analysis in Melanoma Reveals the Importance of CpG Methylation in MITF Regulation. Journal of Investigative Dermatology, 2015, 135, 1820-1828.	0.7	46
78	Transcription Factor Tfe3 Directly Regulates Pgcâ€lalpha in Muscle. Journal of Cellular Physiology, 2015, 230, 2330-2336.	4.1	33
79	ZBTB7A Suppresses Melanoma Metastasis by Transcriptionally Repressing MCAM. Molecular Cancer Research, 2015, 13, 1206-1217.	3.4	44
80	Extreme Vulnerability of IDH1 Mutant Cancers to NAD+ Depletion. Cancer Cell, 2015, 28, 773-784.	16.8	327
81	Authors' Reply. American Journal of Pathology, 2015, 185, 2070.	3.8	1
82	FHL2 switches MITF from activator to repressor of Erbin expression during cardiac hypertrophy. International Journal of Cardiology, 2015, 195, 85-94.	1.7	15
83	Metabolic Vulnerability in Melanoma: A ME2 (Me Too) Story. Journal of Investigative Dermatology, 2015, 135, 657-659.	0.7	3
84	Melanoma. Nature Reviews Disease Primers, 2015, 1, 15003.	30.5	417
85	Biologic Activity of Autologous, Granulocyte–Macrophage Colony-Stimulating Factor Secreting Alveolar Soft-Part Sarcoma and Clear Cell Sarcoma Vaccines. Clinical Cancer Research, 2015, 21, 3178-3186.	7.0	34
86	Precision medicine for cancer with next-generation functional diagnostics. Nature Reviews Cancer, 2015, 15, 747-756.	28.4	466
87	Prognostic Significance of Cutaneous Adverse Events Associated With Pembrolizumab Therapy. JAMA Oncology, 2015, 1, 1340.	7.1	63
88	Label-free DNA imaging in vivo with stimulated Raman scattering microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11624-11629.	7.1	225
89	A Novel Role for Microphthalmia-Associated Transcription Factor–Regulated Pigment Epithelium-Derived Factor during Melanoma Progression. American Journal of Pathology, 2015, 185, 252-265.	3.8	17
90	Landscape of Targeted Anti-Cancer Drug Synergies in Melanoma Identifies a Novel BRAF-VEGFR/PDGFR Combination Treatment. PLoS ONE, 2015, 10, e0140310.	2.5	39

#	Article	IF	Citations
91	Pathways and therapeutic targets in melanoma. Oncotarget, 2014, 5, 1701-1752.	1.8	202
92	Tanning as a substance abuse. Communicative and Integrative Biology, 2014, 7, e971579.	1.4	4
93	The Impact of MITF on Melanoma Development: News from Bench and Bedside. Journal of Investigative Dermatology, 2014, 134, 16-17.	0.7	11
94	Response to BRAF Inhibition in Melanoma Is Enhanced When Combined with Immune Checkpoint Blockade. Cancer Immunology Research, 2014, 2, 643-654.	3.4	226
95	Clinical Profiling of BCL-2 Family Members in the Setting of BRAF Inhibition Offers a Rationale for Targeting De Novo Resistance Using BH3 Mimetics. PLoS ONE, 2014, 9, e101286.	2.5	42
96	UV Signaling Pathways within the Skin. Journal of Investigative Dermatology, 2014, 134, 2080-2085.	0.7	128
97	Highâ€throughput, highâ€content screening for novel pigmentation regulators using a keratinocyte/melanocyte coâ€culture system. Experimental Dermatology, 2014, 23, 125-129.	2.9	13
98	The melanoma revolution: From UV carcinogenesis to a new era in therapeutics. Science, 2014, 346, 945-949.	12.6	328
99	UV and melanoma: the TP53 link. Cell Research, 2014, 24, 1157-1158.	12.0	6
100	The roles of microphthalmia-associated transcription factor and pigmentation in melanoma. Archives of Biochemistry and Biophysics, 2014, 563, 28-34.	3.0	109
101	Skin β-Endorphin Mediates Addiction to UV Light. Cell, 2014, 157, 1527-1534.	28.9	254
102	Melanocyte stem cells as potential therapeutics in skin disorders. Expert Opinion on Biological Therapy, 2014, 14, 1569-1579.	3.1	41
103	A Melanoma Cell State Distinction Influences Sensitivity to MAPK Pathway Inhibitors. Cancer Discovery, 2014, 4, 816-827.	9.4	448
104	Isolation and Molecular Characterization of Circulating Melanoma Cells. Cell Reports, 2014, 7, 645-653.	6.4	91
105	Molecular Pathways: BRAF Induces Bioenergetic Adaptation by Attenuating Oxidative Phosphorylation. Clinical Cancer Research, 2014, 20, 2257-2263.	7.0	79
106	Understanding the Biology of Melanoma and Therapeutic Implications. Hematology/Oncology Clinics of North America, 2014, 28, 437-453.	2.2	33
107	Monitoring Repair of UV-Induced 6-4-Photoproducts with a Purified DDB2 Protein Complex. PLoS ONE, 2014, 9, e85896.	2.5	11
108	PGC-1 Coactivators Regulate MITF and the Tanning Response. Molecular Cell, 2013, 49, 145-157.	9.7	84

#	Article	IF	CITATIONS
109	BRAF Inhibition Is Associated with Enhanced Melanoma Antigen Expression and a More Favorable Tumor Microenvironment in Patients with Metastatic Melanoma. Clinical Cancer Research, 2013, 19, 1225-1231.	7.0	832
110	Targeting melanoma by small molecules: challenges ahead. Pigment Cell and Melanoma Research, 2013, 26, 464-469.	3.3	10
111	Oncogenic BRAF Regulates Oxidative Metabolism via PGC1α and MITF. Cancer Cell, 2013, 23, 302-315.	16.8	689
112	<i>BCL2A1</i> is a lineage-specific antiapoptotic melanoma oncogene that confers resistance to BRAF inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4321-4326.	7.1	200
113	Developing melanoma therapeutics: overview and update. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2013, 5, 257-271.	6.6	13
114	How does pheomelanin synthesis contribute to melanomagenesis?. BioEssays, 2013, 35, 672-676.	2.5	75
115	Myosin-Va Contributes to Manifestation of Malignant-Related Properties in Melanoma Cells. Journal of Investigative Dermatology, 2013, 133, 2809-2812.	0.7	17
116	Imatinib for Melanomas Harboring Mutationally Activated or Amplified <i>KIT</i> Arising on Mucosal, Acral, and Chronically Sun-Damaged Skin. Journal of Clinical Oncology, 2013, 31, 3182-3190.	1.6	530
117	Disproportionate Burden of Melanoma Mortality in Young US Men. JAMA Dermatology, 2013, 149, 903.	4.1	21
118	Blood mRNA signature to predict survival in patients with metastatic melanoma treated with tremelimumab Journal of Clinical Oncology, 2013, 31, 9080-9080.	1.6	1
119	YY1 Regulates Melanocyte Development and Function by Cooperating with MITF. PLoS Genetics, 2012, 8, e1002688.	3.5	45
120	An ultraviolet-radiation-independent pathway to melanoma carcinogenesis in the red hair/fair skin background. Nature, 2012, 491, 449-453.	27.8	406
121	From genes to drugs: targeted strategies for melanoma. Nature Reviews Cancer, 2012, 12, 349-361.	28.4	323
122	Melanoma: from mutations to medicine. Genes and Development, 2012, 26, 1131-1155.	5.9	415
123	A Melanoma Molecular Disease Model. PLoS ONE, 2011, 6, e18257.	2.5	77
124	A new era: melanoma genetics and therapeutics. Journal of Pathology, 2011, 223, 242-251.	4.5	107
125	Hypoxia-induced transcriptional repression of the melanoma-associated oncogene <i>MITF</i> Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E924-33.	7.1	101
126	Biology and Clinical Relevance of the Micropthalmia Family of Transcription Factors in Human Cancer. Journal of Clinical Oncology, 2011, 29, 3474-3482.	1.6	124

#	Article	lF	CITATIONS
127	Dual roles of lineage restricted transcription factors. Transcription, 2011, 2, 19-22.	3.1	41
128	A novel recurrent mutation in MITF predisposes to familial and sporadic melanoma. Nature, 2011, 480, 99-103.	27.8	413
129	Regulation of MITF stability by the USP13 deubiquitinase. Nature Communications, 2011, 2, 414.	12.8	86
130	Central role for cAMP signaling in pigmentation and UV resistance. Cell Cycle, 2011, 10, 8-9.	2.6	29
131	New Strategies in Metastatic Melanoma: Oncogene-Defined Taxonomy Leads to Therapeutic Advances. Clinical Cancer Research, 2011, 17, 4922-4928.	7.0	34
132	Transcriptional Regulation in Melanoma. , 2011, , 79-103.		1
133	How Sunlight Causes Melanoma. Current Oncology Reports, 2010, 12, 319-326.	4.0	104
134	Control of melanocyte differentiation by a MITF–PDE4D3 homeostatic circuit. Genes and Development, 2010, 24, 2276-2281.	5.9	68
135	An Oncogenic Role for <i>ETV1</i> in Melanoma. Cancer Research, 2010, 70, 2075-2084.	0.9	107
136	Identification of the Receptor Tyrosine Kinase c-Met and Its Ligand, Hepatocyte Growth Factor, as Therapeutic Targets in Clear Cell Sarcoma. Cancer Research, 2010, 70, 639-645.	0.9	100
137	Indoor Tanning â€" Science, Behavior, and Policy. New England Journal of Medicine, 2010, 363, 901-903.	27.0	130
138	Selective BRAFV600E Inhibition Enhances T-Cell Recognition of Melanoma without Affecting Lymphocyte Function. Cancer Research, 2010, 70, 5213-5219.	0.9	659
139	Intronic miR-211 Assumes the Tumor Suppressive Function of Its Host Gene in Melanoma. Molecular Cell, 2010, 40, 841-849.	9.7	246
140	Lineage-Specific Transcriptional Regulation of DICER by MITF in Melanocytes. Cell, 2010, 141, 994-1005.	28.9	113
141	Key Roles for Transforming Growth Factor \hat{l}^2 in Melanocyte Stem Cell Maintenance. Cell Stem Cell, 2010, 6, 130-140.	11.1	197
142	Shin-Ichi Nishikawa MD, PhD. Pigment Cell and Melanoma Research, 2010, 23, 683-683.	3.3	0
143	Lighting a path to pigmentation: mechanisms of MITF induction by UV. Pigment Cell and Melanoma Research, 2010, 23, 741-745.	3.3	67
144	Specification and loss of melanocyte stem cells. Seminars in Cell and Developmental Biology, 2009, 20, 111-116.	5.0	23

#	Article	IF	CITATIONS
145	Transcriptional Regulation in Melanoma. Hematology/Oncology Clinics of North America, 2009, 23, 447-465.	2.2	21
146	Scientific and social controversies regarding UV and pigmentation: the beneficial effects of UV irradiance outweighs the risks - a reply. Pigment Cell and Melanoma Research, 2009, 22, 139-139.	3.3	0
147	Preface. Hematology/Oncology Clinics of North America, 2009, 23, xiii-xiv.	2.2	O
148	Indoor ultraviolet tanning and skin cancer: health risks and opportunities. Current Opinion in Oncology, 2009, 21, 144-149.	2.4	72
149	Notch and Melanocytes: Diverse Outcomes from a Single Signal. Journal of Investigative Dermatology, 2008, 128, 2571-2574.	0.7	25
150	Pharmacologic suppression of MITF expression via HDAC inhibitors in the melanocyte lineage. Pigment Cell and Melanoma Research, 2008, 21, 457-463.	3.3	104
151	UV and pigmentation: molecular mechanisms and social controversies. Pigment Cell and Melanoma Research, 2008, 21, 509-516.	3.3	88
152	Major Response to Imatinib Mesylate in <i>KIT</i> -Mutated Melanoma. Journal of Clinical Oncology, 2008, 26, 2046-2051.	1.6	430
153	Epistatic connections between microphthalmiaâ€associated transcription factor and endothelin signaling in Waardenburg syndrome and other pigmentary disorders. FASEB Journal, 2008, 22, 1155-1168.	0.5	78
154	Imatinib Targeting of KIT-Mutant Oncoprotein in Melanoma. Clinical Cancer Research, 2008, 14, 7726-7732.	7.0	126
155	TFE3 Fusions Activate MET Signaling by Transcriptional Up-regulation, Defining Another Class of Tumors as Candidates for Therapeutic MET Inhibition. Cancer Research, 2007, 67, 919-929.	0.9	275
156	Central Role of p53 in the Suntan Response and Pathologic Hyperpigmentation. Cell, 2007, 128, 853-864.	28.9	552
157	High-throughput mapping of the chromatin structure of human promoters. Nature Biotechnology, 2007, 25, 244-248.	17.5	300
158	Melanocyte biology and skin pigmentation. Nature, 2007, 445, 843-850.	27.8	1,048
159	MITF: master regulator of melanocyte development and melanoma oncogene. Trends in Molecular Medicine, 2006, 12, 406-414.	6.7	993
160	Topical drug rescue strategy and skin protection based on the role of Mc1r in UV-induced tanning. Nature, 2006, 443, 340-344.	27.8	302
161	Oncogenic MITF dysregulation in clear cell sarcoma: Defining the MiT family of human cancers. Cancer Cell, 2006, 9, 473-484.	16.8	172
162	c-Met Expression Is Regulated by Mitf in the Melanocyte Lineage. Journal of Biological Chemistry, 2006, 281, 10365-10373.	3.4	145

#	Article	IF	CITATIONS
163	Malignant melanoma: genetics and therapeutics in the genomic era. Genes and Development, 2006, 20, 2149-2182.	5.9	436
164	Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature, 2005, 436, 117-122.	27.8	1,329
165	BRAF Mutations Are Sufficient to Promote Nevi Formation and Cooperate with p53 in the Genesis of Melanoma. Current Biology, 2005, 15, 249-254.	3.9	626
166	Sumoylation of MITF and Its Related Family Members TFE3 and TFEB. Journal of Biological Chemistry, 2005, 280, 146-155.	3.4	128
167	Mechanisms of Hair Graying: Incomplete Melanocyte Stem Cell Maintenance in the Niche. Science, 2005, 307, 720-724.	12.6	984
168	Genomic analysis of the Microphthalmia locus and identification of the MITF-J/Mitf-J isoform. Gene, 2005, 347, 73-82.	2.2	86
169	Transcriptional Regulation of the Melanoma Prognostic Marker Melastatin (TRPM1) by MITF in Melanocytes and Melanoma. Cancer Research, 2004, 64, 509-516.	0.9	191
170	Critical role of CDK2 for melanoma growth linked to its melanocyte-specific transcriptional regulation by MITF. Cancer Cell, 2004, 6, 565-576.	16.8	373
171	Microphthalamia-associated transcription factor: a critical regulator of pigment cell development and survival. Oncogene, 2003, 22, 3035-3041.	5.9	337
172	MLANA/MART1 and SILV/PMEL17/GP100 Are Transcriptionally Regulated by MITF in Melanocytes and Melanoma. American Journal of Pathology, 2003, 163, 333-343.	3.8	266
173	Cloning of an <i>Alpha-TFEB</i> fusion in renal tumors harboring the t(6;11)(p21;q13) chromosome translocation. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 6051-6056.	7.1	238
174	A Tissue-restricted cAMP Transcriptional Response. Journal of Biological Chemistry, 2003, 278, 45224-45230.	3.4	83
175	Identification of Aim-1 as the underwhiteMouse Mutant and Its Transcriptional Regulation by MITF. Journal of Biological Chemistry, 2002, 277, 402-406.	3.4	87
176	β-Catenin–induced melanoma growth requires the downstream target <i>Microphthalmia</i> -associated transcription factor. Journal of Cell Biology, 2002, 158, 1079-1087.	5.2	268
177	Bcl2 Regulation by the Melanocyte Master Regulator Mitf Modulates Lineage Survival and Melanoma Cell Viability. Cell, 2002, 109, 707-718.	28.9	671
178	Sensorineural Deafness and Pigmentation Genes. Neuron, 2001, 30, 15-18.	8.1	83
179	Linkage of M-CSF Signaling to Mitf, TFE3, and the Osteoclast Defect in Mitfmi/mi Mice. Molecular Cell, 2001, 8, 749-758.	9.7	145
180	Microphthalmia: A Signal Responsive Transcriptional Regulator in Development. Pigment Cell & Melanoma Research, 2000, 13, 145-149.	3.6	25

#	Article	IF	CITATIONS
181	Ser298 of MITF, a mutation site in Waardenburg syndrome type 2, is a phosphorylation site with functional significance. Human Molecular Genetics, 2000, 9, 125-132.	2.9	150
182	Turning p53 on or off: either way may treat cancer. Drug Resistance Updates, 2000, 3, 77-79.	14.4	6
183	c-Kit triggers dual phosphorylations, which couple activation and degradation of the essential melanocyte factor Mi. Genes and Development, 2000, 14, 301-312.	5.9	435
184	Microphthalmia Transcription Factor. American Journal of Pathology, 1999, 155, 731-738.	3.8	233
185	MAP kinase links the transcription factor Microphthalmia to c-Kit signalling in melanocytes. Nature, 1998, 391, 298-301.	27.8	588
186	Microphthalmia Gene Product as a Signal Transducer in cAMP-Induced Differentiation of Melanocytes. Journal of Cell Biology, 1998, 142, 827-835.	5.2	456
187	Lineage-specific Signaling in Melanocytes. Journal of Biological Chemistry, 1998, 273, 17983-17986.	3.4	174
188	α-Melanocyte-stimulating Hormone Signaling Regulates Expression of microphthalmia, a Gene Deficient in Waardenburg Syndrome. Journal of Biological Chemistry, 1998, 273, 33042-33047.	3.4	202
189	Age-resolving Osteopetrosis: A Rat Model Implicating Microphthalmia and the Related Transcription Factor TFE3. Journal of Experimental Medicine, 1998, 187, 775-785.	8.5	88
190	atm and p53 cooperate in apoptosis and suppression of tumorigenesis, but not in resistance to acute radiation toxicity. Nature Genetics, 1997, 16, 397-401.	21.4	216
191	Extensive apoptosis in ductal carcinoma in situ of the breast. , 1996, 77, 1831-1835.		54
192	Extensive apoptosis in ductal carcinoma in situ of the breast. Cancer, 1996, 77, 1831-1835.	4.1	2
193	Pre-bending of a promoter sequence enhances affinity for the TATA-binding factor. Nature, 1995, 373, 724-727.	27.8	189
194	Chest wall recurrence of ductal carcinoma in situ of the breast after mastectomy. Cancer, 1993, 71, 3025-3028.	4.1	18
195	Diffuse large cell lymphoma with discordant bone marrow histology. Clinical features and biological implications. Cancer, 1989, 64, 1879-1887.	4.1	48