
Mao Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5031041/publications.pdf Version: 2024-02-01

MAO CHEN

#	Article	IF	CITATIONS
1	<scp>Computerâ€Aided</scp> Living Polymerization Conducted under <scp>Continuousâ€Flow</scp> Conditions ^{â€} . Chinese Journal of Chemistry, 2022, 40, 285-296.	2.6	12
2	Mainâ€Chain Fluoropolymers with Alternating Sequence Control via Lightâ€Driven Reversibleâ€Deactivation Copolymerization in Batch and Flow. Angewandte Chemie, 2022, 134, .	1.6	4
3	Mainâ€Chain Fluoropolymers with Alternating Sequence Control via Lightâ€Driven Reversibleâ€Deactivation Copolymerization in Batch and Flow. Angewandte Chemie - International Edition, 2022, 61, .	7.2	30
4	Facile Access to <i>gem</i> -Trifluoromethyl/Boron-Functionalized Polymers via Free-Radical Copolymerization and Cotelomerization. Macromolecules, 2022, 55, 1524-1532.	2.2	5
5	Organocatalyzed Controlled Copolymerization of Perfluorinated Vinyl Ethers and Unconjugated Monomers Driven by Light. ACS Catalysis, 2022, 12, 7269-7277.	5.5	12
6	Facile Control of Molecular Weight Distribution via <scp>Dropletâ€Flow Lightâ€Driven Reversibleâ€Deactivation</scp> Radical Polymerization ^{â€} . Chinese Journal of Chemistry, 2022, 40, 2305-2312.	2.6	7
7	Porous polymeric ligand promoted copper-catalyzed C-N coupling of (hetero)aryl chlorides under visible-light irradiation. Science China Chemistry, 2021, 64, 17-21.	4.2	9
8	Challenges and Recent Developments of Photoflow-Reversible Deactivation Radical Polymerization (RDRP). Chinese Journal of Polymer Science (English Edition), 2021, 39, 1069-1083.	2.0	17
9	Interfacial growth of free-standing PANI films: toward high-performance all-polymer supercapacitors. Chemical Science, 2021, 12, 1783-1790.	3.7	23
10	Strengthening Polyethylene Thermoplastics through a Dynamic Covalent Networking Additive Based on Alkylboron Chemistry. Macromolecules, 2021, 54, 1760-1766.	2.2	21
11	Facile synthesis of gradient copolymers enabled by droplet-flow photo-controlled reversible deactivation radical polymerization. Science China Chemistry, 2021, 64, 844-851.	4.2	11
12	Fluorinated Bifunctional Solid Polymer Electrolyte Synthesized under Visible Light for Stable Lithium Deposition and Dendriteâ€Free Allâ€Solidâ€State Batteries. Advanced Functional Materials, 2021, 31, 2101736.	7.8	65
13	Recent Advances in Living Cationic Polymerization with Emerging Initiation/Controlling Systems. Macromolecular Rapid Communications, 2021, 42, e2100148.	2.0	25
14	Machine learning-assisted systematical polymerization planning: case studies on reversible-deactivation radical polymerization. Science China Chemistry, 2021, 64, 1039-1046.	4.2	14
15	Titelbild: Visible‣ightâ€Enabled Organocatalyzed Controlled Alternating Terpolymerization of Perfluorinated Vinyl Ethers (Angew. Chem. 37/2021). Angewandte Chemie, 2021, 133, 20225-20225.	1.6	0
16	Visibleâ€Lightâ€Enabled Organocatalyzed Controlled Alternating Terpolymerization of Perfluorinated Vinyl Ethers. Angewandte Chemie, 2021, 133, 20606-20614.	1.6	6
17	Visible‣ightâ€Enabled Organocatalyzed Controlled Alternating Terpolymerization of Perfluorinated Vinyl Ethers. Angewandte Chemie - International Edition, 2021, 60, 20443-20451.	7.2	44
18	High-level hierarchical morphology reinforcing covalent adaptable networks. CheM, 2021, 7, 1990-1992.	5.8	4

Μαο Chen

#	Article	IF	CITATIONS
19	Solvent-Free Synthesis of the Polymer Electrolyte via Photo-Controlled Radical Polymerization: Toward Ultrafast In-Built Fabrication of Solid-State Batteries under Visible Light. ACS Applied Materials & Interfaces, 2021, 13, 8426-8434.	4.0	18
20	Designing Weakly Solvating Solid Main-Chain Fluoropolymer Electrolytes: Synergistically Enhancing Stability toward Li Anodes and High-Voltage Cathodes. ACS Energy Letters, 2021, 6, 4255-4264.	8.8	73
21	Precise Synthesis of Ultraâ€Highâ€Molecularâ€Weight Fluoropolymers Enabled by Chainâ€Transferâ€Agent Differentiation under Visibleâ€Light Irradiation. Angewandte Chemie, 2020, 132, 929-937.	1.6	13
22	Precise Synthesis of Ultraâ€Highâ€Molecularâ€Weight Fluoropolymers Enabled by Chainâ€Transferâ€Agent Differentiation under Visibleâ€Light Irradiation. Angewandte Chemie - International Edition, 2020, 59, 919-927.	7.2	61
23	Shuttling Catalyst: Facilitating Câ^'C Bond Formation via Crossâ€Couplings with a Thermoresponsive Polymeric Ligand. Israel Journal of Chemistry, 2020, 60, 419-423.	1.0	3
24	A functionalized metal organic framework-laden nanoporous polymer electrolyte for exceptionally stable lithium electrodeposition. Chemical Communications, 2020, 56, 15533-15536.	2.2	20
25	Photoorganocatalyzed Divergent Reversibleâ€Deactivation Radical Polymerization towards Linear and Branched Fluoropolymers. Angewandte Chemie - International Edition, 2020, 59, 21470-21474.	7.2	63
26	Light-intensity switch enabled nonsynchronous growth of fluorinated raspberry-like nanoparticles. Chemical Science, 2020, 11, 10431-10436.	3.7	20
27	Photoorganocatalyzed Divergent Reversibleâ€Deactivation Radical Polymerization towards Linear and Branched Fluoropolymers. Angewandte Chemie, 2020, 132, 21654-21658.	1.6	13
28	Investigations into CTA-differentiation-involving polymerization of fluorous monomers: exploitation of experimental variances in fine-tuning of molecular weights. Polymer Chemistry, 2020, 11, 7402-7409.	1.9	3
29	Fluorous-Core Nanoparticle-Embedded Hydrogel Synthesized via Tandem Photo-Controlled Radical Polymerization: Facilitating the Separation of Perfluorinated Alkyl Substances from Water. ACS Applied Materials & Interfaces, 2020, 12, 24319-24327.	4.0	41
30	A metal-free synthesis of 1,1-diphenylvinylsulfides with thiols <i>via</i> thioetherification under continuous-flow conditions. Organic Chemistry Frontiers, 2020, 7, 1490-1494.	2.3	9
31	Photoorganocatalyzed Reversible-Deactivation Alternating Copolymerization of Chlorotrifluoroethylene and Vinyl Ethers under Ambient Conditions: Facile Access to Main-Chain Fluorinated Copolymers. Journal of the American Chemical Society, 2020, 142, 7108-7115.	6.6	89
32	Thienyl Chloride Initiated Living Cationic Polymerization: A General and Efficient Access toward Terminally Functionalized Poly(vinyl ether)s. Macromolecules, 2020, 53, 1536-1542.	2.2	10
33	Strong, Reconfigurable, and Recyclable Thermosets Cross-Linked by Polymer–Polymer Dynamic Interaction Based on Commodity Thermoplastics. Macromolecules, 2020, 53, 956-964.	2.2	46
34	The influence of mixing on chain extension by photo-controlled/living radical polymerization under continuous-flow conditions. Polymer Chemistry, 2019, 10, 4879-4886.	1.9	11
35	Droplet-Flow Photopolymerization Aided by Computer: Overcoming the Challenges of Viscosity and Facilitating the Generation of Copolymer Libraries. Macromolecules, 2019, 52, 5611-5617.	2.2	34
36	Catalyst shuttling enabled by a thermoresponsive polymeric ligand: facilitating efficient cross-couplings with continuously recyclable ppm levels of palladium. Chemical Science, 2019, 10, 8331-8337.	3.7	8

Μαο Chen

#	Article	IF	CITATIONS
37	Controlled/Living Radical Polymerization of Semifluorinated (Meth)acrylates. Synlett, 2018, 29, 1543-1551.	1.0	19
38	Organocatalyzed Photoredox Polymerization from Aromatic Sulfonyl Halides: Facilitating Graft from Aromatic C–H Bonds. Macromolecules, 2018, 51, 938-946.	2.2	42
39	Unsymmetrical difunctionalization of cyclooctadiene under continuous flow conditions: expanding the scope of ring opening metathesis polymerization. Chemical Science, 2018, 9, 1846-1853.	3.7	12
40	Fluorinated Aryl Sulfonimide Tagged (FAST) salts: modular synthesis and structure–property relationships for battery applications. Energy and Environmental Science, 2018, 11, 1326-1334.	15.6	26
41	Organocatalyzed Photocontrolled Radical Polymerization of Semifluorinated (Meth)acrylates Driven by Visible Light. Angewandte Chemie - International Edition, 2018, 57, 333-337.	7.2	114
42	Palladium-Catalyzed Cross-Coupling Polymerization: A New Access to Cross-Conjugated Polymers with Modifiable Structure and Tunable Optical/Conductive Properties. Macromolecules, 2018, 51, 9662-9668.	2.2	22
43	Preparation of semifluorinated poly(meth)acrylates by improved photo-controlled radical polymerization without the use of a fluorinated RAFT agent: facilitating surface fabrication with fluorinated materials. Polymer Chemistry, 2018, 9, 4161-4171.	1.9	25
44	Reduction of (Meth)acrylate-Based Block Copolymers Provides Access to Self-Assembled Materials with Ultrasmall Domains. Macromolecules, 2018, 51, 6757-6763.	2.2	34
45	Organocatalyzed Photocontrolled Radical Polymerization of Semifluorinated (Meth)acrylates Driven by Visible Light. Angewandte Chemie, 2018, 130, 339-343.	1.6	26
46	Logic-Controlled Radical Polymerization with Heat and Light: Multiple-Stimuli Switching of Polymer Chain Growth via a Recyclable, Thermally Responsive Gel Photoredox Catalyst. Journal of the American Chemical Society, 2017, 139, 2257-2266.	6.6	114
47	Living Additive Manufacturing: Transformation of Parent Gels into Diversely Functionalized Daughter Gels Made Possible by Visible Light Photoredox Catalysis. ACS Central Science, 2017, 3, 124-134.	5.3	146
48	Semibatch monomer addition as a general method to tune and enhance the mechanics of polymer networks via loop-defect control. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4875-4880.	3.3	67
49	Mapping a stable solvent structure landscape for aprotic Li–air battery organic electrolytes. Journal of Materials Chemistry A, 2017, 5, 23987-23998.	5.2	33
50	Light-Controlled Radical Polymerization: Mechanisms, Methods, and Applications. Chemical Reviews, 2016, 116, 10167-10211.	23.0	883
51	Improving photo-controlled living radical polymerization from trithiocarbonates through the use of continuous-flow techniques. Chemical Communications, 2015, 51, 6742-6745.	2.2	117
52	Visible-Light-Controlled Living Radical Polymerization from a Trithiocarbonate Iniferter Mediated by an Organic Photoredox Catalyst. ACS Macro Letters, 2015, 4, 566-569.	2.3	191
53	Rapid and Efficient Copperâ€Catalyzed Finkelstein Reaction of (Hetero)Aromatics under Continuousâ€Flow Conditions. Angewandte Chemie - International Edition, 2015, 54, 263-266.	7.2	87
54	Rapid and Efficient Trifluoromethylation of Aromatic and Heteroaromatic Compounds Using Potassium Trifluoroacetate Enabled by a Flow System. Angewandte Chemie - International Edition, 2013, 52, 11628-11631.	7.2	145

Mao Chen

#	Article	IF	CITATIONS
55	Continuousâ€Flow Synthesis of 1 <i>â€</i> Substituted Benzotriazoles from Chloronitrobenzenes and Amines in a CN Bond Formation/Hydrogenation/Diazotization/Cyclization Sequence. Angewandte Chemie - International Edition, 2013, 52, 4247-4250.	7.2	81
56	CX (X=Br, I) Bondâ€Tolerant Aerobic Oxidative Cross―Coupling: A Strategy to Selectively Construct βâ€Aryl Ketones and Aldehydes. Advanced Synthesis and Catalysis, 2012, 354, 341-346.	2.1	42
57	Palladium-Catalyzed Aerobic Oxidative Cross-Coupling Reactions of Terminal Alkynes with Alkylzinc Reagents. Journal of the American Chemical Society, 2010, 132, 4101-4103.	6.6	137
58	Arylation of unactivated arenes. Dalton Transactions, 2010, 39, 10352.	1.6	109
59	Nickel-Catalyzed Oxidative Coupling Reactions of Two Different Terminal Alkynes Using O ₂ as the Oxidant at Room Temperature: Facile Syntheses of Unsymmetric 1,3-Diynes. Organic Letters, 2009, 11, 709-712.	2.4	245
60	Nickelâ€Catalyzed Reductive Cyclization of Unactivated 1,6â€Enynes in the Presence of Organozinc Reagents. Angewandte Chemie - International Edition, 2008, 47, 2279-2282.	7.2	51
61	Effect of Lithium Chloride on Tuning the Reactivity of Pauson-Khand ReactionsÂ-Catalyzed by Palladium-Tetramethylthiourea. Synthesis, 2007, 2007, 2565-2570.	1.2	3
62	Ni-Catalyzed Mild Arylation of α-Halocarbonyl Compounds with Arylboronic Acids. Organic Letters, 2007, 9, 5601-5604.	2.4	102
63	Vinyl crown ether as a novel radical crosslinked sol–gel SPME fiber for determination of organophosphorus pesticides in food samples. Analytica Chimica Acta, 2006, 559, 89-96.	2.6	82
64	Asymmetric Hydrogenation of Pyridines: Enantioselective Synthesis of Nipecotic Acid Derivatives. European Journal of Organic Chemistry, 2006, 2006, 4343-4347.	1.2	85