Paul Joseph

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5030857/publications.pdf

Version: 2024-02-01

			279798	2	65206
	56	1,804 citations	23		42
	papers	citations	h-index		g-index
Ξ					
	56	56	56		2141
	30	30	30		2171
	all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Flame retardance of poly(methyl methacrylate) modified with phosphorus-containing compounds. Polymer Degradation and Stability, 2002, 77, 227-233.	5.8	142
2	Flame retardance in some polystyrenes and poly(methyl methacrylate)s with covalently bound phosphorus-containing groups: initial screening experiments and some laser pyrolysis mechanistic studies. Polymer Degradation and Stability, 2000, 69, 267-277.	5.8	129
3	A three-dimensional Mn ₃ O ₄ network supported on a nitrogenated graphene electrocatalyst for efficient oxygen reduction reaction in alkaline media. Journal of Materials Chemistry A, 2014, 2, 14493-14501.	10.3	120
4	Reactive modifications of some chain―and stepâ€growth polymers with phosphorusâ€containing compounds: effects on flame retardanceâ€"a review. Polymers for Advanced Technologies, 2011, 22, 395-406.	3.2	98
5	Thermal Degradation and Fire Properties of Fungal Mycelium and Mycelium - Biomass Composite Materials. Scientific Reports, 2018, 8, 17583.	3.3	87
6	Sustainable Non-Metallic Building Materials. Sustainability, 2010, 2, 400-427.	3.2	84
7	Microplasma Processed Ultrathin Boron Nitride Nanosheets for Polymer Nanocomposites with Enhanced Thermal Transport Performance. ACS Applied Materials & Samp; Interfaces, 2016, 8, 13567-13572.	8.0	82
8	Thermal degradation and flame retardance in copolymers of methyl methacrylate with diethyl (methacryloyloxymethyl) phosphonate. Polymer Degradation and Stability, 2000, 70, 425-436.	5.8	80
9	Flame retarding poly(methyl methacrylate) with phosphorus-containing compounds: comparison of an additive with a reactive approach. Polymer Degradation and Stability, 2001, 74, 441-447.	5.8	7 9
10	Production of reduced graphene oxide via hydrothermal reduction in an aqueous sulphuric acid suspension and its electrochemical behaviour. Journal of Solid State Electrochemistry, 2015, 19, 361-380.	2.5	78
11	Oxygen reduction reaction by electrochemically reduced graphene oxide. Faraday Discussions, 2014, 173, 415-428.	3.2	77
12	A Review of Lithium-Ion Battery Fire Suppression. Energies, 2020, 13, 5117.	3.1	69
13	Flame-retarding effects of dialkyl-p-vinylbenzyl phosphonates in copolymers with acrylonitrile. Polymer International, 2006, 55, 764-771.	3.1	56
14	A comparative study of the effects of chemical additives on the suppression efficiency of water mist. Fire Safety Journal, 2013, 58, 221-225.	3.1	56
15	Thermal degradation analysis and XRD characterisation of fibre-forming synthetic polypropylene containing nanoclay. Polymer Degradation and Stability, 2007, 92, 727-732.	5.8	52
16	Experimental and modelling studies on the kinetics and mechanisms of thermal degradation of polymethyl methacrylate in nitrogen and air. Journal of Analytical and Applied Pyrolysis, 2016, 120, 423-433.	5. 5	44
17	Effect of different compatibilisers on nanoclay dispersion, thermal stability, and burning behavior of polypropylene–nanoclay blends. Journal of Applied Polymer Science, 2008, 108, 816-824.	2.6	43
18	Combustion behaviours of chemically modified polyacrylonitrile polymers containing phosphorylamino groups. Polymer Degradation and Stability, 2012, 97, 2531-2535.	5.8	36

#	Article	IF	CITATIONS
19	Thermal degradation and flammability characteristics of some polystyrenes and poly(methyl) Tj ETQq1 1 0.78431 Stability, 2004, 83, 181-185.	4 rgBT /O	verlock 10 T 29
20	The influence of comonomers on the degradation and flammability of polyacrylonitrile: Design input for a new generation of flame retardants. Polymer Degradation and Stability, 2010, 95, 2260-2268.	5.8	28
21	Pyrolysis Combustion Flow Calorimetry Studies on Some Reactively Modified Polymers. Polymers, 2015, 7, 453-467.	4.5	28
22	An experimental study of the thermal performance of a novel intumescent fire protection coating. Fire Safety Journal, 2017, 92, 132-141.	3.1	27
23	Melt-Flow Behaviours of Thermoplastic Materials under Fire Conditions: Recent Experimental Studies and Some Theoretical Approaches. Materials, 2015, 8, 8793-8803.	2.9	25
24	Characterization of cellulosic wastes and gasification products from chicken farms. Waste Management, 2012, 32, 701-709.	7.4	20
25	Biobased Carbon Fiber Composites with Enhanced Flame Retardancy: A Cradle-to-Cradle Approach. ACS Sustainable Chemistry and Engineering, 2022, 10, 1059-1069.	6.7	20
26	Thermal and Calorimetric Evaluations of Polyacrylonitrile Containing Covalently-Bound Phosphonate Groups. Polymers, 2018, 10, 131.	4.5	19
27	Polymer Combustion as a Basis for Hybrid Propulsion: A Comprehensive Review and New Numerical Approaches. Energies, 2011, 4, 1779-1839.	3.1	17
28	Modeling the Pyrolysis and Combustion Behaviors of Non-Charring and Intumescent-Protected Polymers Using "FiresCone― Polymers, 2015, 7, 1979-1997.	4.5	16
29	A study of the effect of thickness on the thermal degradation and flammability characteristics of some composite materials using a cone calorimeter. Journal of Fire Sciences, 2017, 35, 547-564.	2.0	15
30	Reactive and Additive Modifications of Styrenic Polymers with Phosphorus-Containing Compounds and Their Effects on Fire Retardance. Molecules, 2020, 25, 3779.	3.8	14
31	Passive fire protection of wood using some bio-derived fire retardants. Fire Safety Journal, 2021, 120, 103074.	3.1	14
32	Structural studies of thermally stable, combustion-resistant polymer composites. Polymer Journal, 2017, 49, 711-719.	2.7	11
33	Techniques for Assessing the Combustion Behaviour of Polymeric Materials: Some Current Perspectives and Future Directions. Macromolecular Symposia, 2016, 362, 105-118.	0.7	10
34	A Study of the Thermal Degradation and Combustion Characteristics of Some Materials Commonly Used in the Construction Sector. Polymers, 2019, 11, 1833.	4.5	9
35	A Kinetic Analysis of the Thermal Degradation Behaviours of Some Bio-Based Substrates. Polymers, 2020, 12, 1830.	4.5	9
36	An "electronic nose―as a potential device for fire detection of forest product fire loads in enclosures. Wood Material Science and Engineering, 2015, 10, 130-144.	2.3	8

#	Article	IF	CITATIONS
37	Phosphorus-Based Flame Retardants. , 2009, , 107-127.		8
38	Mechanistic Aspects of Condensed- and Gaseous-Phase Activities of Some Phosphorus-Containing Fire Retardants. Polymers, 2020, 12, 1801.	4.5	7
39	Thermal and Calorimetric Evaluations of Some Chemically Modified Carbohydrate-Based Substrates with Phosphorus-Containing Groups. Polymers, 2020, 12, 588.	4.5	7
40	Mode of Action of Condensed- and Gaseous-Phase Fire Retardation in Some Phosphorus-Modified Polymethyl Methacrylate- and Polystyrene-Based Bulk Polymers. Polymers, 2021, 13, 3402.	4.5	6
41	Bioimaging of C2C12 Muscle Myoblasts Using Fluorescent Carbon Quantum Dots Synthesized from Bread. Nanomaterials, 2020, 10, 1575.	4.1	5
42	Impact of Technical, Human, and Organizational Risks on Reliability of Fire Safety Systems in High-Rise Residential Buildings—Applications of an Integrated Probabilistic Risk Assessment Model. Applied Sciences (Switzerland), 2020, 10, 8918.	2.5	5
43	In-Situ Isothermal Crystallization of Poly(I-lactide). Polymers, 2021, 13, 3377.	4.5	5
44	Incorporation of technical, human and organizational risks in a dynamic probabilistic fire risk model for <scp>highâ€rise</scp> residential buildings. Fire and Materials, 2021, 45, 779-810.	2.0	4
45	Sensitivity and Uncertainty Analyses of Human and Organizational Risks in Fire Safety Systems for High-Rise Residential Buildings with Probabilistic T-H-O-Risk Methodology. Applied Sciences (Switzerland), 2021, 11, 2590.	2.5	4
46	The influence of phosphorus- and nitrogen- containing groups on the thermal stability and combustion characteristics of styrenic polymers. Journal of Thermal Analysis and Calorimetry, 2023, 148, 229-241.	3.6	4
47	Passive fire protection of ligno-cellulosic substrates using environmentally-friendly formulations. Materials Today: Proceedings, 2017, 4, 5282-5289.	1.8	3
48	Flexible and Ultrahigh Throughâ€Plane Thermallyâ€Conductive Polyethylene/Boron Nitride Nanocomposite Films. Macromolecular Materials and Engineering, 0, , 2100695.	3.6	3
49	A Study of the Residual Strength of Reactive Powder-Based Geopolymer Concrete under Elevated Temperatures. Applied Sciences (Switzerland), 2021, 11, 11834.	2.5	3
50	CHARACTERISTICS OF CHEMICALLY MODIFIED AND NANOCOMPOSITE POLYMERS AS NOVEL FUELS FOR HYBRID ROCKET PROPULSION. International Journal of Energetic Materials and Chemical Propulsion, 2012, 11, 549-566.	0.3	2
51	Some recent developments and testing strategies relating to the passive fire protection of concrete using intumescent coatings: a review. Journal of Structural Fire Engineering, 2022, ahead-of-print, .	0.8	2
52	Effects of Initial Surface Evaporation on the Performance of Fly Ash-Based Geopolymer Paste at Elevated Temperatures. Applied Sciences (Switzerland), 2022, 12, 364.	2.5	2
53	Mechanistic Aspects of Flame Retardation by Phosphorus-Containing Groups in Some Chain Growth Polymers. ACS Symposium Series, 2012, , 37-50.	0.5	1
54	Passive Fire Protection of Taeda pine Wood by Using Starch-Based Surface Coatings. Polymers, 2021, 13, 3841.	4.5	1

#	Article	IF	CITATIONS
55	Thermal and Calorimetric Investigations of Some Phosphorus-Modified Chain Growth Polymers 1: Polymethyl Methacrylate. Polymers, 2022, 14, 1447.	4.5	1
56	Thermal and Calorimetric Investigations of Some Phosphorus-Modified Chain Growth Polymers 2: Polystyrene. Polymers, 2022, 14, 1520.	4. 5	0