Matthias Van Hul

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5030428/publications.pdf

Version: 2024-02-01

159358 168136 7,114 55 30 53 citations h-index g-index papers 55 55 55 9152 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nature Medicine, 2017, 23, 107-113.	15.2	1,451
2	Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nature Medicine, 2019, 25, 1096-1103.	15.2	1,281
3	Gut microbiome and health: mechanistic insights. Gut, 2022, 71, 1020-1032.	6.1	661
4	Microbial regulation of organismal energy homeostasis. Nature Metabolism, 2019, 1, 34-46.	5.1	354
5	MFN2 mutation distribution and genotype/phenotype correlation in Charcot-Marie-Tooth type 2. Brain, 2006, 129, 2093-2102.	3.7	351
6	Endocannabinoids $\hat{a}\in$ " at the crossroads between the gut microbiota and host metabolism. Nature Reviews Endocrinology, 2016, 12, 133-143.	4.3	275
7	Intestinal epithelial MyD88 is a sensor switching host metabolism towards obesity according to nutritional status. Nature Communications, 2014, 5, 5648.	5.8	197
8	From correlation to causality: the case of <i>Subdoligranulum</i> . Gut Microbes, 2020, 12, 1849998.	4.3	192
9	Osteoblast recruitment to sites of bone formation in skeletal development, homeostasis, and regeneration. Birth Defects Research Part C: Embryo Today Reviews, 2013, 99, 170-191.	3.6	154
10	Adipose tissue NAPE-PLD controls fat mass development by altering the browning process and gut microbiota. Nature Communications, 2015, 6, 6495.	5.8	144
11	Rhubarb extract prevents hepatic inflammation induced by acute alcohol intake, an effect related to the modulation of the gut microbiota. Molecular Nutrition and Food Research, 2017, 61, 1500899.	1.5	138
12	Pasteurized <i>Akkermansia muciniphila</i> increases whole-body energy expenditure and fecal energy excretion in diet-induced obese mice. Gut Microbes, 2020, 11, 1231-1245.	4.3	134
13	Novel opportunities for next-generation probiotics targeting metabolic syndrome. Current Opinion in Biotechnology, 2015, 32, 21-27.	3.3	127
14	Hepatocyte MyD88 affects bile acids, gut microbiota and metabolome contributing to regulate glucose and lipid metabolism. Gut, 2017, 66, 620-632.	6.1	125
15	Reduced obesity, diabetes, and steatosis upon cinnamon and grape pomace are associated with changes in gut microbiota and markers of gut barrier. American Journal of Physiology - Endocrinology and Metabolism, 2018, 314, E334-E352.	1.8	119
16	Bacteria-derived long chain fatty acid exhibits anti-inflammatory properties in colitis. Gut, 2021, 70, 1088-1097.	6.1	105
17	Intestinal epithelial N-acylphosphatidylethanolamine phospholipase D links dietary fat to metabolic adaptations in obesity and steatosis. Nature Communications, 2019, 10, 457.	5.8	100
18	<i>Dysosmobacter welbionis</i> is a newly isolated human commensal bacterium preventing diet-induced obesity and metabolic disorders in mice. Gut, 2022, 71, 534-543.	6.1	95

#	Article	IF	Citations
19	Novel insights into the genetically obese (ob/ob) and diabetic (db/db) mice: two sides of the same coin. Microbiome, 2021, 9, 147.	4.9	92
20	Increased gut permeability in cancer cachexia: mechanisms and clinical relevance. Oncotarget, 2018, 9, 18224-18238.	0.8	90
21	Gut microbiome, endocrine control of gut barrier function and metabolic diseases. Journal of Endocrinology, 2021, 248, R67-R82.	1.2	85
22	CD36 promotes adipocyte differentiation and adipogenesis. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 949-956.	1.1	82
23	A polyphenolic extract from green tea leaves activates fat browning in high-fat-diet-induced obese mice. Journal of Nutritional Biochemistry, 2017, 49, 15-21.	1.9	64
24	Activation of Skeletal Stem and Progenitor Cells for Bone Regeneration Is Driven by PDGFRÎ ² Signaling. Developmental Cell, 2019, 51, 236-254.e12.	3.1	64
25	Targeting Carbohydrates and Polyphenols for a Healthy Microbiome and Healthy Weight. Current Nutrition Reports, 2019, 8, 307-316.	2.1	50
26	Gut Microbiota and Host Metabolism: From Proof of Concept to Therapeutic Intervention. Microorganisms, 2021, 9, 1302.	1.6	46
27	Rhubarb Supplementation Prevents Diet-Induced Obesity and Diabetes in Association with Increased Akkermansia muciniphila in Mice. Nutrients, 2020, 12, 2932.	1.7	45
28	Novel strategy for oral peptide delivery in incretin-based diabetes treatment. Gut, 2020, 69, 911-919.	6.1	41
29	Gelatinase A (MMP-2) promotes murine adipogenesis. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 1449-1456.	1.1	39
30	Mediterranean diet, gut microbiota and health: when age and calories do not add up!. Gut, 2020, 69, 1167-1168.	6.1	35
31	Gut microbes participate in food preference alterations during obesity. Gut Microbes, 2021, 13, 1959242.	4.3	35
32	Matrix metalloproteinase inhibition impairs murine adipose tissue development independently of leptin. Endocrine Journal, 2011, 58, 101-107.	0.7	30
33	Toxicological safety evaluation of pasteurized <i>Akkermansia muciniphila</i> . Journal of Applied Toxicology, 2021, 41, 276-290.	1.4	30
34	Gelatinase B (MMP-9) deficiency does not affect murine adipose tissue development. Thrombosis and Haemostasis, 2010, 104, 165-171.	1.8	29
35	Caloric restriction improves coagulation and inflammation profile in obese mice. Thrombosis Research, 2012, 129, 74-79.	0.8	29
36	Gut microbiota and regulation of myokine-adipokine function. Current Opinion in Pharmacology, 2020, 52, 9-17.	1.7	29

#	Article	IF	CITATIONS
37	Comparison of the effects of soluble corn fiber and fructooligosaccharides on metabolism, inflammation, and gut microbiome of high-fat diet-fed mice. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E779-E791.	1.8	19
38	Gut microbiota and obesity: causally linked?. Expert Review of Gastroenterology and Hepatology, 2020, 14, 401-403.	1.4	19
39	Hepatic NAPE-PLD Is a Key Regulator of Liver Lipid Metabolism. Cells, 2020, 9, 1247.	1.8	17
40	Role of Thrombospondinâ€2 in Murine Adipose Tissue Angiogenesis and Development. Obesity, 2012, 20, 1757-1762.	1.5	16
41	Obesity and tripleâ€negativeâ€breastâ€cancer: Is apelin a new key target?. Journal of Cellular and Molecular Medicine, 2020, 24, 10233-10244.	1.6	16
42	Hepatic MyD88 regulates liver inflammation by altering synthesis of oxysterols. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E99-E108.	1.8	15
43	Intestinal NAPE-PLD contributes to short-term regulation of food intake via gut-to-brain axis. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E647-E657.	1.8	14
44	Combined endogenous MR biomarkers to predict basal tumor oxygenation and response to hyperoxic challenge. NMR in Biomedicine, 2017, 30, e3836.	1.6	13
45	Exploring the endocannabinoidome in genetically obese (ob/ob) and diabetic (db/db) mice: Links with inflammation and gut microbiota. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2022, 1867, 159056.	1.2	12
46	Microbial signatures in metabolic tissues: a novel paradigm for obesity and diabetes?. Nature Metabolism, 2020, 2, 211-212.	5.1	11
47	Differential effects of a gelatinase inhibitor on adipocyte differentiation and adipose tissue development. Clinical and Experimental Pharmacology and Physiology, 2013, 40, n/a-n/a.	0.9	10
48	Effect of weight loss on gelatinase levels in obese mice. Clinical and Experimental Pharmacology and Physiology, 2011, 38, 647-649.	0.9	9
49	Matrix metalloproteinase inhibition affects adipose tissue mass in obese mice. Clinical and Experimental Pharmacology and Physiology, 2012, 39, 544-550.	0.9	9
50	Do diet and microbes really â€~PREDICT' cardiometabolic risks?. Nature Reviews Endocrinology, 2021, 17, 259-260.	4.3	7
51	Nutritional depletion in <i>n</i> à€3 PUFA in apoE knockâ€out mice: A new model of endothelial dysfunction associated with fatty liver disease. Molecular Nutrition and Food Research, 2016, 60, 2198-2207.	1.5	4
52	Acetate: Friend or foe against breast tumour growth in the context of obesity?. Journal of Cellular and Molecular Medicine, 2020, 24, 14195-14204.	1.6	4
53	The colonoscopic leakage model: a new model to study the intestinal wound healing at molecular level. Gut, 2020, 69, 2071-2073.	6.1	1
54	La préparation colique en chirurgie colorectale. Praticien En Anesthesie Reanimation, 2020, 24, 35-40.	0.0	0

#	Article	IF	CITATIONS
55	Gut microbiome, endocrine control of gut barrier function and metabolic diseases. Journal of Endocrinology, 2021, 250, X1.	1.2	O