Victor Izquierdo-Roca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5030047/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluation of defect formation in chalcopyrite compounds under Cu-poor conditions by advanced structural and vibrational analyses. Acta Materialia, 2022, 223, 117507.	3.8	5
2	Ultrathin Wideâ€Bandgap aâ€5i:Hâ€Based Solar Cells for Transparent Photovoltaic Applications. Solar Rrl, 2022, 6, 2100909.	3.1	7
3	Insights into the Effects of RbFâ€Postâ€Deposition Treatments on the Absorber Surface of High Efficiency Cu(In,Ca)Se ₂ Solar Cells and Development of Analytical and Machine Learning Process Monitoring Methodologies Based on Combinatorial Analysis. Advanced Energy Materials, 2022, 12, .	10.2	6
4	Controlling the Anionic Ratio and Gradient in Kesterite Technology. ACS Applied Materials & Interfaces, 2022, 14, 1177-1186.	4.0	16
5	Comprehensive physicochemical and photovoltaic analysis of different Zn substitutes (Mn, Mg, Fe, Ni,) Tj ETQq1 1	. 9.784314 9.2	4 ggBT /Ovel
6	Characterization of the Stability of Indium Tin Oxide and Functional Layers for Semitransparent Backâ€Contact Applications on Cu(in,Ga)Se ₂ Solar Cells. Solar Rrl, 2022, 6, .	3.1	8
7	Does Sb ₂ Se ₃ Admit Nonstoichiometric Conditions? How Modifying the Overall Se Content Affects the Structural, Optical, and Optoelectronic Properties of Sb ₂ Se ₃ Thin Films. ACS Applied Materials & amp; Interfaces, 2022, 14, 11222-11234.	4.0	17
8	ZnO/Ag Nanocomposites with Enhanced Antimicrobial Activity. Applied Sciences (Switzerland), 2022, 12, 5023.	1.3	13
9	Kinetics and phase analysis of kesterite compounds: Influence of chalcogen availability in the reaction pathway. Materialia, 2022, 24, 101509.	1.3	2
10	Defect depth-profiling in kesterite absorber by means of chemical etching and surface analysis. Applied Surface Science, 2021, 540, 148342.	3.1	6
11	Rear interface engineering of kesterite Cu ₂ ZnSnSe ₄ solar cells by adding CuGaSe ₂ thin layers. Progress in Photovoltaics: Research and Applications, 2021, 29, 334-343.	4.4	11
12	Combinatorial and machine learning approaches for the analysis of Cu ₂ ZnGeSe ₄ : influence of the off-stoichiometry on defect formation and solar cell performance. Journal of Materials Chemistry A, 2021, 9, 10466-10476.	5.2	13
13	Contact resistance stability and cation mixing in a Vulcan-based LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ slurry for semi-solid flow batteries. Dalton Transactions, 2021, 50, 6710-6717.	1.6	7
14	Effective module level encapsulation of CIGS solar cells with Al2O3 thin film grown by atomic layer deposition. Solar Energy Materials and Solar Cells, 2021, 222, 110914.	3.0	8
15	Bromine etching of kesterite thin films: perspectives in depth defect profiling and device performance improvement. , 2021, , .		1
16	Insights on the Thermal Stability of the Sb ₂ Se ₃ Quasiâ€1D Photovoltaic Technology. Solar Rrl, 2021, 5, 2100517.	3.1	2
17	Insights into interface and bulk defects in a high efficiency kesterite-based device. Energy and Environmental Science, 2021, 14, 507-523.	15.6	48
18	spectrapepper: A Python toolbox for advanced analysis of spectroscopic data for materials and devices Journal of Open Source Software, 2021, 6, 3781.	2.0	2

#	Article	IF	CITATIONS
19	Point defects, compositional fluctuations, and secondary phases in non-stoichiometric kesterites. JPhys Energy, 2020, 2, 012002.	2.3	92
20	Structural and vibrational properties of α- and π-SnS polymorphs for photovoltaic applications. Acta Materialia, 2020, 183, 1-10.	3.8	43
21	Vibrational Properties of RbInSe ₂ : Raman Scattering Spectroscopy and First-Principle Calculations. Journal of Physical Chemistry C, 2020, 124, 1285-1291.	1.5	5
22	UV‣elective Optically Transparent Zn(O,S)â€Based Solar Cells. Solar Rrl, 2020, 4, 2070112.	3.1	0
23	Rear Band gap Grading Strategies on Sn–Ge-Alloyed Kesterite Solar Cells. ACS Applied Energy Materials, 2020, 3, 10362-10375.	2.5	29
24	Investigation on limiting factors affecting Cu2ZnGeSe4 efficiency: Effect of annealing conditions and surface treatment. Solar Energy Materials and Solar Cells, 2020, 216, 110701.	3.0	17
25	UVâ€ S elective Optically Transparent Zn(O,S)â€Based Solar Cells. Solar Rrl, 2020, 4, 2000470.	3.1	12
26	Cu-Sn-S system: Vibrational properties and coexistence of the Cu2SnS3, Cu3SnS4 and Cu4SnS4 compounds. Scripta Materialia, 2020, 186, 180-184.	2.6	15
27	Uncovering details behind the formation mechanisms of Cu2ZnGeSe4 photovoltaic absorbers. Journal of Materials Chemistry C, 2020, 8, 4003-4011.	2.7	13
28	Transition-Metal Oxides for Kesterite Solar Cells Developed on Transparent Substrates. ACS Applied Materials & Interfaces, 2020, 12, 33656-33669.	4.0	29
29	CZTS solar cells and the possibility of increasing VOC using evaporated Al2O3 at the CZTS/CdS interface. Solar Energy, 2020, 198, 696-703.	2.9	28
30	Advanced Raman spectroscopy of Cs2AgBiBr6 double perovskites and identification of Cs3Bi2Br9 secondary phases. Scripta Materialia, 2020, 184, 24-29.	2.6	46
31	Synthesis and Crystal Structure Evolution of Co-Evaporated Cs ₂ AgBiBr ₆ Thin Films upon Thermal Treatment. Journal of Physical Chemistry C, 2020, 124, 9249-9255.	1.5	20
32	Efficient Seâ€Rich Sb ₂ Se ₃ /CdS Planar Heterojunction Solar Cells by Sequential Processing: Control and Influence of Se Content. Solar Rrl, 2020, 4, 2000141.	3.1	23
33	Over 10% Efficient Wide Bandgap CICSe Solar Cells on Transparent Substrate with Na Predeposition Treatment. Solar Rrl, 2020, 4, 2000284.	3.1	8
34	Influence of co-electrodeposition parameters in the synthesis of kesterite thin films for photovoltaic. Journal of Alloys and Compounds, 2020, 839, 155679.	2.8	10
35	Is It Possible To Develop Complex S–Se Graded Band Gap Profiles in Kesterite-Based Solar Cells?. ACS Applied Materials & Interfaces, 2019, 11, 32945-32956.	4.0	42
36	Improving Carrier-Transport Properties of CZTS by Mg Incorporation with Spray Pyrolysis. ACS Applied Materials & amp; Interfaces, 2019, 11, 25824-25832.	4.0	42

2

#	Article	IF	CITATIONS
37	Multiwavelength excitation Raman scattering study of Sb ₂ Se ₃ compound: fundamental vibrational properties and secondary phases detection. 2D Materials, 2019, 6, 045054.	2.0	69
38	Suppressed Deep Traps and Bandgap Fluctuations in Cu ₂ CdSnS ₄ Solar Cells with â‰^8% Efficiency. Advanced Energy Materials, 2019, 9, 1902509.	10.2	65
39	Study and optimization of alternative MBEâ€deposited metallic precursors for highly efficient kesterite CZTSe:Ge solar cells. Progress in Photovoltaics: Research and Applications, 2019, 27, 779-788.	4.4	12
40	CuZnInSe ₃ â€based solar cells: Impact of copper concentration on vibrational and structural properties and device performance. Progress in Photovoltaics: Research and Applications, 2019, 27, 716-723.	4.4	7
41	Defect characterisation in Cu ₂ ZnSnSe ₄ kesterites <i>via</i> resonance Raman spectroscopy and the impact on optoelectronic solar cell properties. Journal of Materials Chemistry A, 2019, 7, 13293-13304.	5.2	63
42	Evaluation of AA-CVD deposited phase pure polymorphs of SnS for thin films solar cells. RSC Advances, 2019, 9, 14899-14909.	1.7	42
43	Progress and Perspectives of Thin Film Kesterite Photovoltaic Technology: A Critical Review. Advanced Materials, 2019, 31, e1806692.	11.1	333
44	Impact of Thin CuGa Layers Added at the Rear Interface of Cu2ZnSnSe4 Solar Cells. , 2019, , .		0
45	Numerical modeling and experimental realization of wide bandgap ZnTe-based solar cells for semi-transparent PV application. , 2019, , .		0
46	An Insight into Pure Ge Based Kesterite Synthesis. , 2019, , .		1
47	Effect of Cd on cation redistribution and order-disorder transition in Cu ₂ (Zn,Cd)SnS ₄ . Journal of Materials Chemistry A, 2019, 7, 26927-26933.	5.2	22
48	Insights into the Formation Pathways of Cu ₂ ZnSnSe ₄ Using Rapid Thermal Processes. ACS Applied Energy Materials, 2018, 1, 1981-1989.	2.5	16
49	Turning Earth Abundant Kesterite-Based Solar Cells Into Efficient Protected Water-Splitting Photocathodes. ACS Applied Materials & Interfaces, 2018, 10, 13425-13433.	4.0	31
50	How small amounts of Ge modify the formation pathways and crystallization of kesterites. Energy and Environmental Science, 2018, 11, 582-593.	15.6	169
51	C <scp>ZTS</scp> e solar cells developed on polymer substrates: Effects of lowâ€ŧemperature processing. Progress in Photovoltaics: Research and Applications, 2018, 26, 55-68.	4.4	23
52	Double band gap gradients in sequentially processed photovoltaic absorbers from the Cu(In,Ga)Se ₂ â€ZnSe pseudobinary system. Progress in Photovoltaics: Research and Applications, 2018, 26, 135-144.	4.4	7
53	Enhanced Heteroâ€Junction Quality and Performance of Kesterite Solar Cells by Aluminum Hydroxide Nanolayers and Efficiency Limitation Revealed by Atomicâ€resolution Scanning Transmission Electron Microscopy. Solar Rrl, 2018, 3, 1800279.	3.1	6

54 Doping Effects on Kesterites Other than Alkalis. , 2018, , .

#	Article	IF	CITATIONS
55	An in-depth investigation on the grain growth and the formation of secondary phases of ultrasonic-sprayed Cu2ZnSnS4 based thin films assisted by Na crystallization catalyst. Solar Energy, 2018, 176, 277-286.	2.9	8
56	Sulfurization of co-evaporated Cu2ZnSnSe4 thin film solar cells: The role of Na. Solar Energy Materials and Solar Cells, 2018, 186, 115-123.	3.0	17
57	Pre-annealing of metal stack precursors and its beneficial effect on kesterite absorber properties and device performance. Solar Energy Materials and Solar Cells, 2018, 185, 226-232.	3.0	11
58	Effect of Magnesium Incorporation on Solution-Processed Kesterite Solar Cells. Frontiers in Chemistry, 2018, 6, 5.	1.8	24
59	Cu2ZnSnSe4 based solar cells combining co-electrodeposition and rapid thermal processing. Solar Energy, 2018, 173, 955-963.	2.9	13
60	Nondestructive Raman Scattering Assessment of Solution-Processed ZnO-Doped Layers for Photovoltaic Applications. Journal of Physical Chemistry C, 2017, 121, 3212-3218.	1.5	17
61	Cationic compositional optimization of CuIn(S 1-y Se y) 2 ultra-thin layers obtained by chemical bath deposition. Applied Surface Science, 2017, 404, 57-62.	3.1	4
62	Structural Polymorphism in "Kesterite―Cu ₂ ZnSnS ₄ : Raman Spectroscopy and First-Principles Calculations Analysis. Inorganic Chemistry, 2017, 56, 3467-3474.	1.9	84
63	Cu2ZnSnS4 thin film solar cells grown by fast thermal evaporation and thermal treatment. Solar Energy, 2017, 141, 236-241.	2.9	32
64	Subcellular Optical pH Nanoscale Sensor. ChemistrySelect, 2017, 2, 8115-8121.	0.7	5
65	Bifacial Kesterite Solar Cells on FTO Substrates. ACS Sustainable Chemistry and Engineering, 2017, 5, 11516-11524.	3.2	45
66	Characterization of Cu ₂ SnS ₃ polymorphism and its impact on optoelectronic properties. Journal of Materials Chemistry A, 2017, 5, 23863-23871.	5.2	56
67	Preparation and characterization of Cu ₂ ZnSnSe ₄ and Cu ₂ ZnSn(S,Se) ₄ powders by ball milling process for solar cells application. Materials Research Express, 2017, 4, 125501.	0.8	11
68	Resonant Raman scattering based approaches for the quantitative assessment of nanometric ZnMgO layers in high efficiency chalcogenide solar cells. Scientific Reports, 2017, 7, 1144.	1.6	9
69	Towards In-reduced photovoltaic absorbers: Evaluation of zinc-blende CuInSe2-ZnSe solid solution. Solar Energy Materials and Solar Cells, 2017, 160, 26-33.	3.0	15
70	Multiwavelength excitation Raman scattering of Cu2ZnSn1-xGex(S,Se)4 single crystals for earth abundant photovoltaic applications. Journal of Alloys and Compounds, 2017, 692, 249-256.	2.8	28
71	Transition Metal Oxides Nano-Layers as Efficient Back Electron Reflectors For Cu2ZnSnSe4 Solar Cells. , 2017, , .		0
72	Raman scattering assessment of point defects in kesterite semiconductors: UV resonant Raman		3

characterization for advanced photovoltaics. , 2017, , .

#	Article	IF	CITATIONS
73	Optical properties of quaternary kesterite-type Cu ₂ Zn(Sn _{1â`x} Ge _x)S ₄ crystalline alloys: Raman scattering, photoluminescence and first-principle calculations. RSC Advances, 2016, 6, 67756-67763.	1.7	25
74	Post-deposition annealing of Cu <inf>2</inf> ZnSnSe <inf>4</inf> /CdS based solar cells: Analysis of the absorber's surface defects. , 2016, , .		0
75	Advanced hybrid buffer layers for Cu <inf>2</inf> ZnSnSe <inf>4</inf> solar cells. , 2016, , .		1
76	Enhancing grain growth and boosting Voc in CZTSe absorber layers $\hat{a} \in$ " Is Ge doping the answer?. , 2016, , .		1
77	Development of Cu <inf>2</inf> SnS <inf>3</inf> based solar cells by a sequential process. , 2016, , .		Ο
78	The Cu(In, Ga)Se <inf>2</inf> -ZnSe system: Optimizing solid solutions for high V <inf>OC</inf> photovoltaic devices. , 2016, , .		0
79	CdS bi-layers for optimized CdS/Cu <inf>2</inf> ZnSnSe <inf>4</inf> solar cells. , 2016, , .		Ο
80	Selenization of Cu2ZnSnS4 thin films obtained by pneumatic spray pyrolysis. Journal of Analytical and Applied Pyrolysis, 2016, 120, 45-51.	2.6	11
81	<i>>V</i> _{oc} Boosting and Grain Growth Enhancing Ge-Doping Strategy for Cu ₂ ZnSnSe ₄ Photovoltaic Absorbers. Journal of Physical Chemistry C, 2016, 120, 9661-9670.	1.5	69
82	Phosphonic acids aid composition adjustment in the synthesis of Cu2+x Zn1â^'x SnSe4â^'y nanoparticles. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	5
83	Perchlorate-Induced Doping of Electrodeposited ZnO Films for Optoelectronic Applications. Journal of Physical Chemistry C, 2016, 120, 18953-18962.	1.5	13
84	Influence of Amorphous Silicon Carbide Intermediate Layer in the Back-Contact Structure of Cu ₂ ZnSnSe ₄ Solar Cells. IEEE Journal of Photovoltaics, 2016, 6, 1327-1332.	1.5	8
85	Advanced Raman Spectroscopy of Methylammonium Lead Iodide: Development of a Non-destructive Characterisation Methodology. Scientific Reports, 2016, 6, 35973.	1.6	103
86	Raman scattering analysis of the surface chemistry of kesterites: Impact of post-deposition annealing and Cu/Zn reordering on solar cell performance. Solar Energy Materials and Solar Cells, 2016, 157, 462-467.	3.0	71
87	Polarized Raman scattering study of kesterite type Cu2ZnSnS4 single crystals. Scientific Reports, 2016, 6, 19414.	1.6	88
88	Bi-directional crystallization of Cu <inf>2</inf> ZnSnSe <inf>4</inf> assisted with back/front Ge nanolayers. , 2016, , .		1
89	The importance of back contact modification in Cu2ZnSnSe4 solar cells: The role of a thin MoO2 layer. Nano Energy, 2016, 26, 708-721.	8.2	77
90	Optical phonons in the kesterite Cu ₂ ZnGeS ₄ semiconductor: polarized Raman spectroscopy and first-principle calculations. RSC Advances, 2016, 6, 13278-13285.	1.7	35

#	Article	IF	CITATIONS
91	Ultra-thin CdS for highly performing chalcogenides thin film based solar cells. Solar Energy Materials and Solar Cells, 2016, 158, 138-146.	3.0	31
92	Alkali doping strategies for flexible and light-weight Cu ₂ ZnSnSe ₄ solar cells. Journal of Materials Chemistry A, 2016, 4, 1895-1907.	5.2	88
93	Optical methodology for process monitoring of chalcopyrite photovoltaic technologies: Application to low cost Cu(In,Ca)(S,Se)2 electrodeposition based processes. Solar Energy Materials and Solar Cells, 2016, 158, 168-183.	3.0	51
94	Secondary phase and Cu substitutional defect dynamics in kesterite solar cells: Impact on optoelectronic properties. Solar Energy Materials and Solar Cells, 2016, 149, 304-309.	3.0	82
95	Impact of Na Dynamics at the Cu ₂ ZnSn(S,Se) ₄ /CdS Interface During Post Low Temperature Treatment of Absorbers. ACS Applied Materials & Interfaces, 2016, 8, 5017-5024.	4.0	72
96	Towards high performance Cd-free CZTSe solar cells with a ZnS(O,OH) buffer layer: the influence of thiourea concentration on chemical bath deposition. Journal Physics D: Applied Physics, 2016, 49, 125602.	1.3	39
97	Raman scattering quantitative assessment of the anion composition ratio in Zn(O,S) layers for Cd-free chalcogenide-based solar cells. RSC Advances, 2016, 6, 24536-24542.	1.7	13
98	Role of S and Se atoms on the microstructural properties of kesterite Cu ₂ ZnSn(S _x Se _{1â^x}) ₄ thin film solar cells. Physical Chemistry Chemical Physics, 2016, 18, 8692-8700.	1.3	43
99	Wide band-gap tuning Cu2ZnSn1â^'xGexS4 single crystals: Optical and vibrational properties. Solar Energy Materials and Solar Cells, 2016, 158, 147-153.	3.0	44
100	Resonant Raman scattering of ZnS _x Se _{1â^'x} solid solutions: the role of S and Se electronic states. Physical Chemistry Chemical Physics, 2016, 18, 7632-7640.	1.3	43
101	Efficient bifacial Cu2ZnSnSe4 solar cells. , 2015, , .		3
102	Large Efficiency Improvement in Cu ₂ ZnSnSe ₄ Solar Cells by Introducing a Superficial Ge Nanolayer. Advanced Energy Materials, 2015, 5, 1501070.	10.2	188
103	Large performance improvement in Cu2ZnSnSe4 based solar cells by surface engineering with a nanometric Ge layer. , 2015, , .		4
104	Chemical bath deposition route for the synthesis of ultra-thin CuIn(S,Se) 2 based solar cells. Thin Solid Films, 2015, 582, 74-78.	0.8	6
105	Optimization of CdS buffer layer for highâ€performance Cu ₂ ZnSnSe ₄ solar cells and the effects of light soaking: elimination of crossover and red kink. Progress in Photovoltaics: Research and Applications, 2015, 23, 1660-1667.	4.4	110
106	Raman scattering quantitative analysis of the anion chemical composition in kesterite Cu2ZnSn(SxSe1â^'x)4 solid solutions. Journal of Alloys and Compounds, 2015, 628, 464-470.	2.8	69
107	An overview of technological aspects of Cu(In,Ga)Se ₂ solar cell architectures incorporating ZnO nanorod arrays. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 76-87.	0.8	15
108	Influence of compositionally induced defects on the vibrational properties of device grade Cu2ZnSnSe4 absorbers for kesterite based solar cells. Applied Physics Letters, 2015, 106, .	1.5	135

#	Article	IF	CITATIONS
109	Non-destructive assessment of ZnO:Al window layers in advanced Cu(In,Ga)Se ₂ photovoltaic technologies. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 56-60.	0.8	12
110	Advanced characterization of electrodeposition-based high efficiency solar cells: Non-destructive Raman scattering quantitative assessment of the anion chemical composition in Cu(In,Ga)(S,Se)2 absorbers. Solar Energy Materials and Solar Cells, 2015, 143, 212-217.	3.0	26
111	Complex Surface Chemistry of Kesterites: Cu/Zn Reordering after Low Temperature Postdeposition Annealing and Its Role in High Performance Devices. Chemistry of Materials, 2015, 27, 5279-5287.	3.2	99
112	Synthesis of CuIn(S,Se)2 quaternary alloys by screen printing and selenization-sulfurization sequential steps: Development of composition graded absorbers for low cost photovoltaic devices. Materials Chemistry and Physics, 2015, 160, 237-243.	2.0	9
113	Structural characterisation of Cu _{2.04} Zn _{0.91} Sn _{1.05} S _{2.08} Se _{1.92} . Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 588-591.	0.8	19
114	Impact of Cu–Au type domains in high current density CuInS 2 solar cells. Solar Energy Materials and Solar Cells, 2015, 139, 101-107.	3.0	15
115	Formation and impact of secondary phases in Cu-poor Zn-rich Cu2ZnSn(S1â^'Se)4 (0â‰ y â‰⊉) based solar cells. Solar Energy Materials and Solar Cells, 2015, 140, 289-298.	3.0	60
116	Compositional paradigms in multinary compound systems for photovoltaic applications: a case study of kesterites. Journal of Materials Chemistry A, 2015, 3, 9451-9455.	5.2	34
117	Towards the growth of Cu 2 ZnSn 1â^'x Ge x S 4 thin films by a single-stage process: Effect of substrate temperature and composition. Solar Energy Materials and Solar Cells, 2015, 139, 1-9.	3.0	33
118	Multiwavelength excitation Raman scattering analysis of bulk and two-dimensional MoS ₂ : vibrational properties of atomically thin MoS ₂ layers. 2D Materials, 2015, 2, 035006.	2.0	97
119	Synthesis of Cu2ZnSnS4nanoparticles and analysis of secondary phases in powder pellets. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 329-335.	0.8	8
120	Cu ₂ ZnSnS ₄ absorber layers deposited by spray pyrolysis for advanced photovoltaic technology. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 126-134.	0.8	7
121	CuIn1â [°] 'Al Se2 thin film solar cells with depth gradient composition prepared by selenization of evaporated metallic precursors. Solar Energy Materials and Solar Cells, 2015, 132, 245-251.	3.0	22
122	Raman scattering analysis of electrodeposited Cu(In,Ga)Se2 solar cells: Impact of ordered vacancy compounds on cell efficiency. Applied Physics Letters, 2014, 105, .	1.5	49
123	Multiwavelength excitation Raman scattering of Cu2ZnSn(SxSe1â^'x)4 (0 â‰ a €‰ <i>x</i> â‰ a €‰1) µ thin films: Vibrational properties of sulfoselenide solid solutions. Applied Physics Letters, 2014, 105, .	polycrystal	line 64
124	Rapid thermal processing of Cu <inf>2</inf> ZnSnSe <inf>4</inf> thin films. , 2014, , .		1
125	Simplified formation process for Cu2ZnSnS4-based solar cells. Thin Solid Films, 2014, 573, 148-158.	0.8	15
126	Structural study and Raman scattering analysis of Cu_2ZnSiTe_4 bulk crystals. Optics Express, 2014, 22, A1936.	1.7	11

#	Article	IF	CITATIONS
127	Rapid annealing of reactively sputtered precursors for Cu ₂ ZnSnS ₄ solar cells. Progress in Photovoltaics: Research and Applications, 2014, 22, 10-17.	4.4	131
128	Secondary phase formation in Znâ€rich Cu ₂ ZnSnSe ₄ â€based solar cells annealed in low pressure and temperature conditions. Progress in Photovoltaics: Research and Applications, 2014, 22, 479-487.	4.4	97
129	High V <inf>OC</inf> Cu <inf>2</inf> ZnSnSe <inf>4</inf> /CdS:Cu based solar cell: Evidences of a metal-insulator-semiconductor (MIS) type hetero-junction. , 2014, , .		8
130	ZnS grain size effects on near-resonant Raman scattering: optical non-destructive grain size estimation. CrystEngComm, 2014, 16, 4120.	1.3	105
131	Two ideal compositions for kesterite-based solar cell devices. , 2014, , .		3
132	Vibrational and structural properties of Cu <inf>2</inf> ZnSn(S <inf>x</inf> Se <inf>1−x</inf>) <inf>4</inf> (0 ≤ x ≤ 1) solid solutions. , 2014, , .		0
133	Discrimination and detection limits of secondary phases in Cu2ZnSnS4 using X-ray diffraction and Raman spectroscopy. Thin Solid Films, 2014, 569, 113-123.	0.8	98
134	Precursor Stack Ordering Effects in Cu ₂ ZnSnSe ₄ Thin Films Prepared by Rapid Thermal Processing. Journal of Physical Chemistry C, 2014, 118, 17291-17298.	1.5	53
135	Impact of Sn(S,Se) Secondary Phases in Cu ₂ ZnSn(S,Se) ₄ Solar Cells: a Chemical Route for Their Selective Removal and Absorber Surface Passivation. ACS Applied Materials & Interfaces, 2014, 6, 12744-12751.	4.0	132
136	Multiwavelength excitation Raman scattering study of polycrystalline kesterite Cu2ZnSnS4 thin films. Applied Physics Letters, 2014, 104, .	1.5	249
137	Combined Raman scattering/photoluminescence analysis of Cu(In,Ga)Se2 electrodeposited layers. Solar Energy, 2014, 103, 89-95.	2.9	16
138	Optical phonons in the wurtzstanniteCu2ZnGeS4semiconductor: Polarized Raman spectroscopy and first-principle calculations. Physical Review B, 2014, 89, .	1.1	24
139	Raman scattering crystalline assessment of polycrystalline Cu2ZnSnS4 thin films for sustainable photovoltaic technologies: Phonon confinement model. Acta Materialia, 2014, 70, 272-280.	3.8	115
140	ZnSe Etching of Znâ€Rich Cu ₂ ZnSnSe ₄ : An Oxidation Route for Improved Solar ell Efficiency. Chemistry - A European Journal, 2013, 19, 14814-14822.	1.7	118
141	Toward a high Cu2ZnSnS4 solar cell efficiency processed by spray pyrolysis method. Journal of Renewable and Sustainable Energy, 2013, 5, .	0.8	32
142	A thermal route to synthesize photovoltaic grade CuInSe2 films from printed CuO/In2O3 nanoparticle-based inks under Se atmosphere. Journal of Renewable and Sustainable Energy, 2013, 5, 053140.	0.8	4
143	Polarized Raman scattering analysis of Cu ₂ ZnSiS ₄ and Cu ₂ ZnSiSe ₄ single crystals. Journal of Applied Physics, 2013, 114, 173507.	1.1	29
144	Polarized Raman scattering analysis of Cu2ZnSnSe4 and Cu2ZnGeSe4 single crystals. Journal of Applied Physics, 2013, 114, 193514.	1.1	70

#	Article	IF	CITATIONS
145	UV-Raman scattering assessment of ZnO:Al layers from Cu(In, Ga)Se <inf>2</inf> based solar cells: Application for fast on-line process monitoring. , 2013, , .		0
146	Selective detection of secondary phases in Cu <inf>2</inf> ZnSn(S, Se) <inf>4</inf> based absorbers by pre-resonant Raman spectroscopy. , 2013, , .		12
147	Compositional optimization of photovoltaic grade Cu2ZnSnS4 films grown by pneumatic spray pyrolysis. Thin Solid Films, 2013, 535, 67-72.	0.8	66
148	Impact of electronic defects on the Raman spectra from electrodeposited Cu(In,Ga)Se2 solar cells: Application for non-destructive defect assessment. Applied Physics Letters, 2013, 102, .	1.5	30
149	On the formation mechanisms of Zn-rich Cu2ZnSnS4 films prepared by sulfurization of metallic stacks. Solar Energy Materials and Solar Cells, 2013, 112, 97-105.	3.0	200
150	Cu2ZnSnS4 thin films grown by flash evaporation and subsequent annealing in Ar atmosphere. Thin Solid Films, 2013, 535, 62-66.	0.8	20
151	Raman scattering and disorder effect in Cu ₂ ZnSnS ₄ . Physica Status Solidi - Rapid Research Letters, 2013, 7, 258-261.	1.2	136
152	Single‣tep Sulfo‣elenization Method to Synthesize Cu ₂ ZnSn(S _{<i>y</i>} Se _{1â^'<i>y</i>}) ₄ Absorbers from Metallic Stack Precursors. ChemPhysChem, 2013, 14, 1836-1843.	1.0	54
153	Secondary phases dependence on composition ratio in sprayed Cu2ZnSnS4 thin films and its impact on the high power conversion efficiency. Solar Energy Materials and Solar Cells, 2013, 117, 246-250.	3.0	116
154	Raman spectra of wurtzstannite quaternary compounds. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 1075-1078.	0.8	20
155	Cu ₂ ZnSnS ₄ thin films grown by spray pyrolysis: characterization by Raman spectroscopy and Xâ€ray diffraction. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 1082-1085.	0.8	23
156	Inhibiting the absorber/Mo-back contact decomposition reaction in Cu2ZnSnSe4 solar cells: the role of a ZnO intermediate nanolayer. Journal of Materials Chemistry A, 2013, 1, 8338.	5.2	151
157	The three A symmetry Raman modes of kesterite in Cu_2ZnSnSe_4. Optics Express, 2013, 21, A695.	1.7	45
158	Preparation of 4.8% efficiency Cu <inf>2</inf> ZnSnSe <inf>4</inf> based solar cell by a two step process. , 2012, , .		2
159	Developing Raman scattering as quality control technique: Correlation with presence of electronic defects in CIGS-based devices. , 2012, , .		1
160	Composition Control and Thermoelectric Properties of Quaternary Chalcogenide Nanocrystals: The Case of Stannite Cu ₂ CdSnSe ₄ . Chemistry of Materials, 2012, 24, 562-570.	3.2	153
161	Vibrational properties of stannite and kesterite type compounds: Raman scattering analysis of Cu2(Fe,Zn)SnS4. Journal of Alloys and Compounds, 2012, 539, 190-194.	2.8	201
162	Raman scattering investigation of MnxFe1â^'xIn2S4 solid solutions. Materials Chemistry and Physics, 2012, 136, 883-888.	2.0	7

#	Article	IF	CITATIONS
163	Raman analysis of monoclinic Cu2SnS3 thin films. Applied Physics Letters, 2012, 100, .	1.5	232
164	Development of a Selective Chemical Etch To Improve the Conversion Efficiency of Zn-Rich Cu ₂ ZnSnS ₄ Solar Cells. Journal of the American Chemical Society, 2012, 134, 8018-8021.	6.6	242
165	Comprehensive Comparison of Various Techniques for the Analysis of Elemental Distributions in Thin Films. Microscopy and Microanalysis, 2011, 17, 728-751.	0.2	72
166	In-depth resolved Raman scattering analysis for the identification of secondary phases: Characterization of Cu2ZnSnS4 layers for solar cell applications. Applied Physics Letters, 2011, 98, .	1.5	287
167	Detection of a ZnSe secondary phase in coevaporated Cu2ZnSnSe4 thin films. Applied Physics Letters, 2011, 98, .	1.5	195
168	Process monitoring of chalcopyrite photovoltaic technologies by Raman spectroscopy: an application to low cost electrodeposition based processes. New Journal of Chemistry, 2011, 35, 453-460.	1.4	52
169	Raman scattering analysis of Cu-poor Cu(In,Ga)Se2 cells fabricated on polyimide substrates: Effect of Na content on microstructure and phase structure. Thin Solid Films, 2011, 519, 7300-7303.	0.8	29
170	Comparative study of the nonlinear optical properties of Si nanocrystals fabricated by eâ€beam evaporation, PECVD or LPCVD. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 969-973.	0.8	9
171	Assessment of absorber composition and nanocrystalline phases in CuInS2 based photovoltaic technologies by ex-situ/in-situ resonant Raman scattering measurements. Solar Energy Materials and Solar Cells, 2011, 95, S83-S88.	3.0	27
172	Real-Time Raman Scattering Analysis of the Electrochemical Growth of CulnSe2 Precursors for Culn(S,Se)2 Solar Cells. Journal of the Electrochemical Society, 2011, 158, H521.	1.3	5
173	Cu deficiency in multi-stage co-evaporated Cu(In,Ga)Se2 for solar cells applications: Microstructure and Ga in-depth alloying. Acta Materialia, 2010, 58, 3468-3476.	3.8	61
174	Influence of NaF incorporation during Cu(In,Ca)Se <inf>2</inf> growth on microstructure and photovoltaic performance. , 2010, , .		15
175	Electrochemical synthesis of CuIn(S,Se)2 alloys with graded composition for high efficiency solar cells. Applied Physics Letters, 2009, 94, 061915.	1.5	20
176	Raman scattering based strategies for quality control and process monitoring in electrodeposited Culn(S,Se)2 solar cell technologies. Materials Research Society Symposia Proceedings, 2009, 1165, 1.	0.1	0
177	Characterisation of Secondary Phases in Cu Poor CuInSe2: Surface and in-depth resolved Raman scattering analysis of polycrystalline layers. Materials Research Society Symposia Proceedings, 2009, 1165, 1.	0.1	2
178	Electrodeposition based synthesis of S-rich Culn(S,Se)2 layers for photovoltaic applications: Raman scattering analysis of electrodeposited CulnSe2 precursors. Thin Solid Films, 2009, 517, 2163-2166.	0.8	21
179	Raman scattering and structural analysis of electrodeposited CuInSe ₂ and Sâ€rich quaternary CuIn(S,Se) ₂ semiconductors for solar cells. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 1001-1004.	0.8	51
180	Analysis of sulphurisation processes of electrodeposited S-rich CuIn(S,Se)2 layers for photovoltaic applications. Thin Solid Films, 2009, 517, 2264-2267.	0.8	12

#	Article	IF	CITATIONS
181	Key role of Cu–Se binary phases in electrodeposited CuInSe2 precursors on final distribution of Cu–S phases in CuIn(S,Se)2 absorbers. Thin Solid Films, 2009, 517, 2268-2271.	0.8	29
182	Quality and stability of compound indium sulphide as source material for buffer layers in Cu(In,Ga)Se2 solar cells. Solar Energy Materials and Solar Cells, 2009, 93, 148-152.	3.0	50
183	In-depth resolved Raman scattering analysis of secondary phases in Cu-poor CuInSe2 based thin films. Applied Physics Letters, 2009, 95, 121907.	1.5	40
184	Investigation of compositional inhomogeneities in complex polycrystalline Cu(In,Ga)Se2 layers for solar cells. Applied Physics Letters, 2009, 95, .	1.5	43
185	Raman scattering microcrystalline assessment and device quality control of electrodeposited Culn(S,Se)2 based solar cells. Thin Solid Films, 2008, 516, 7021-7025.	0.8	12
186	Raman scattering characterisation of electrochemical growth of CuInSe ₂ nanocrystalline thin films for photovoltaic applications: Surface and inâ€depth analysis. Surface and Interface Analysis, 2008, 40, 798-801.	0.8	31
187	Analysis of S-rich Culn(S,Se)2 layers for photovoltaic applications: Influence of the sulfurization temperature on the crystalline properties of electrodeposited and sulfurized CulnSe2 precursors. Journal of Applied Physics, 2008, 103, 123109.	1.1	34
188	Raman microprobe characterization of electrodeposited S-rich CuIn(S,Se)2 for photovoltaic applications: Microstructural analysis. Journal of Applied Physics, 2007, 101, 103517.	1.1	66
189	Electrodeposited CuIn(S, Se)2 films for low cost high efficiency solar cell applications: microstructural analysis. , 2007, , .		1
190	Thickness evaluation of AlO x barrier layers for encapsulation of flexible PV modules in industrial environments by normal reflectance and machine learning. Progress in Photovoltaics: Research and Applications, 0, , .	4.4	2