Arsalan Mirjafari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5029927/publications.pdf

Version: 2024-02-01

52	960	471061	476904 29 g-index
papers	citations	h-index	g-index
54 all docs	54 docs citations	54 times ranked	1276 citing authors

#	Article	IF	CITATIONS
1	Molecular design principles of ionic liquids with a sulfonyl fluoride moiety. New Journal of Chemistry, 2021, 45, 2443-2452.	1.4	13
2	Pt(II)-Decorated Covalent Organic Framework for Photocatalytic Difluoroalkylation and Oxidative Cyclization Reactions. ACS Applied Materials & Samp; Interfaces, 2021, 13, 6349-6358.	4.0	27
3	Design Principles of Lipid-like Ionic Liquids for Gene Delivery. ACS Applied Bio Materials, 2021, 4, 4737-4743.	2.3	15
4	Covalently linked hydrogen bond donors: The other side of molecular frustration in deep eutectic solvents. Journal of Chemical Physics, 2021, 155, 084502.	1.2	3
5	Developing Structural First Principles for Alkylated Triphenylphosphonium-Based Ionic Liquids. ACS Omega, 2021, 6, 32285-32296.	1.6	5
6	From gene delivery agents to ionic liquids: The impacts of cation structure and anion identity on liquefaction. Journal of Molecular Liquids, 2019, 296, 111758.	2.3	4
7	Phosphorodithioate-functionalized ionic liquids: Synthesis and physicochemical properties characterization. Journal of Molecular Liquids, 2019, 276, 334-337.	2.3	6
8	Ionic liquid syntheses <i>via</i> click chemistry: expeditious routes toward versatile functional materials. Chemical Communications, 2018, 54, 2944-2961.	2.2	52
9	Ionic liquids and poly(ionic liquid)s for 3D printing – A focused mini-review. European Polymer Journal, 2018, 108, 390-398.	2.6	73
10	Heterogeneous microwave-assisted Ullmann type methodology for synthesis of rigid-core ionic liquid crystals. New Journal of Chemistry, 2018, 42, 10421-10431.	1.4	4
11	Autocatalytic Synthesis of Bifluoride Ionic Liquids by SuFEx Click Chemistry. Angewandte Chemie, 2018, 130, 16237-16241.	1.6	15
12	Autocatalytic Synthesis of Bifluoride Ionic Liquids by SuFEx Click Chemistry. Angewandte Chemie - International Edition, 2018, 57, 16005-16009.	7.2	38
13	Studies on solubility and S-alkylation of 2-thiouracil in ionic liquids. Journal of Molecular Liquids, 2018, 265, 463-467.	2.3	4
14	Deconvolution of conformational equilibria in methimazolium-based ionic liquid ion pair: Infrared spectroscopic and computational study. Journal of Molecular Liquids, 2018, 266, 194-202.	2.3	1
15	1-Methyl-1 <i>H</i> -imidazol-3-ium methanesulfonate. IUCrData, 2018, 3, .	0.1	3
16	Thioether-functionalized picolinium ionic liquids: synthesis, physical properties and computational studies. New Journal of Chemistry, 2017, 41, 1625-1630.	1.4	11
17	Study of biocatalytic activity of histidine ammonia lyase in protic ionic liquids. Journal of Molecular Liquids, 2017, 248, 830-832.	2.3	8
18	Methimazolium-based ionic liquid crystals: Emergence of mesomorphic properties via a sulfur motif. Tetrahedron, 2017, 73, 5456-5460.	1.0	10

#	Article	IF	Citations
19	lonic liquids with thioether motifs as synthetic cationic lipids for gene delivery. Chemical Communications, 2017, 53, 8328-8331.	2.2	14
20	Synthesis and Properties ofÂLipid-Inspired Ionic Liquids. , 2016, , 205-223.		3
21	Biomimetic design of protic lipidic ionic liquids with enhanced fluidity. New Journal of Chemistry, 2016, 40, 7795-7803.	1.4	10
22	Bifunctional hydrophobic ionic liquids: facile synthesis by thiol–ene "click―chemistry. Green Chemistry, 2016, 18, 2443-2452.	4.6	30
23	Click chemistry mediated synthesis of bio-inspired phosphonyl-functionalized ionic liquids. Green Chemistry, 2015, 17, 1259-1268.	4.6	12
24	Crystal structure of a methimazole-based ionic liquid. Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, o1008-o1009.	0.2	4
25	Crystal structure of triphenyl(vinyl)phosphonium tetraphenylborate. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, o1143-o1143.	0.2	0
26	Impact of water on CO2 capture by amino acid ionic liquids. Environmental Chemistry Letters, 2014, 12, 201-208.	8.3	81
27	Direct synthesis of 2,4,5-trisubstituted imidazoles from alcohols and α-hydroxyketones by microwave. Environmental Chemistry Letters, 2014, 12, 177-183.	8.3	14
28	Synthesis of New Lipidâ€Inspired Ionic Liquids by Thiolâ€ene Chemistry: Profound Solvent Effect on Reaction Pathway. Chemistry - A European Journal, 2014, 20, 7576-7580.	1.7	33
29	The Effect of the Sulfur Position on the Melting Points of Lipidic 1-Methyl-3-Thiaalkylimidazolium Ionic Liquids. Journal of Physical Chemistry B, 2014, 118, 10232-10239.	1.2	21
30	lonic liquid-induced conversion of methoxymethyl-protected alcohols into nitriles and iodides using [Hmim][NO3]. Tetrahedron Letters, 2014, 55, 4424-4426.	0.7	1
31	Building a bridge between aprotic and protic ionic liquids. RSC Advances, 2013, 3, 337-340.	1.7	38
32	A simple and rapid route to novel tetra (4-thia alkyl) ammonium bromides. RSC Advances, 2013, 3, 24612.	1.7	11
33	Synthesis and thermophysical properties of ionic liquids: cyclopropyl moieties versus olefins as Tm-reducing elements in lipid-inspired ionic liquids. Tetrahedron Letters, 2013, 54, 12-14.	0.7	22
34	Thermophysical Properties of Imidazolium-Based Lipidic Ionic Liquids. Journal of Chemical & Engineering Data, 2013, 58, 1516-1522.	1.0	30
35	A co-crystal of 1,10-phenanthroline with boric acid: a novel aza-aromatic complex. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o1067-o1068.	0.2	3
36	Degradation of Chitin Utilizing Acid Functionalized Ionic Liquids Technology. ACS Symposium Series, 2012, , 189-198.	0.5	5

#	Article	IF	CITATIONS
37	Lipid-Inspired Ionic Liquids Containing Long-Chain Appendages: Novel Class of Biomaterials with Attractive Properties and Applications. ACS Symposium Series, 2012, , 199-216.	0.5	11
38	Structure-based tuning of Tm in lipid-like ionic liquids. Insights from Tf2Nâ^' salts of gene transfection agents. Chemical Communications, 2012, 48, 7522.	2.2	12
39	The Combination of 1-Butyl-3-methylimidazolium Bromide and Trichloro(trifluoromethanesulfonato)titanium(IV) as a New Protocol for the Synthesis of Aryl Nitriles. Bulletin of the Korean Chemical Society, 2012, 33, 2102-2104.	1.0	5
40	Dual functional ionic liquids as plasticisers and antimicrobial agents for medical polymers. Green Chemistry, 2011, 13, 1527.	4.6	73
41	Efficient one-pot synthesis of 2,3-dihydroquinazolin-4(1H)-ones from aromatic aldehydes and their one-pot oxidation to quinazolin-4(3H)-ones catalyzed by Bi(NO3)3·5H2O: Investigating the role of the catalyst. Comptes Rendus Chimie, 2011, 14, 944-952.	0.2	26
42	Microwave-promoted one-pot conversion of alcohols to oximes using 1-methylimidazolium nitrate, [Hmim][NO3], as a green promoter and medium. Comptes Rendus Chimie, 2011, 14, 1065-1070.	0.2	14
43	Functionalized ionic liquids with highly polar polyhydroxylated appendages and their rapid synthesis via thiol-ene click chemistry. Tetrahedron Letters, 2011, 52, 5173-5175.	0.7	21
44	Oneâ€pot synthesis of 2,3â€disubstitutedâ€2,3â€dihydroquinazolinâ€4(<i>1H</i>)â€ones using [Hmim][NO ₃]: An ecoâ€friendly protocol. Journal of Heterocyclic Chemistry, 2011, 48, 1419-1427.	1.4	7
45	[C4mim][InCl4]: An efficient catalyst-medium for alkoxymethylation of alcohols and their interconversion to acetates and TMS-ethers. Comptes Rendus Chimie, 2011, 14, 568-579.	0.2	5
46	Multi-wall carbon nanotubes supported molybdenum hexacarbonyl: An efficient and highly reusable catalyst for epoxidation of alkenes with tert-butyl hydroperoxide. Journal of Molecular Catalysis A, 2010, 329, 44-49.	4.8	36
47	Microwave-promoted, one-pot conversion of alkoxymethylated protected alcohols into their corresponding nitriles, bromides, and iodides using [bmim][lnCl4] as a green catalyst. Tetrahedron Letters, 2010, 51, 3274-3276.	0.7	17
48	H3PW12O40–[bmim][FeCl4]: A novel and green catalyst-medium system for microwave-promoted selective interconversion of alkoxymethyl ethers into their corresponding nitriles, bromides and iodides. Comptes Rendus Chimie, 2010, 13, 1468-1473.	0.2	4
49	Microwave-Promoted Alkynylation-Cyclization of 2-Aminoaryl Ketones: A Green Strategy for the Synthesis of 2,4-Disubstituted Quinolines. Synlett, 2010, 2010, 3104-3112.	1.0	43
50	12-Tungstophosphoric acid supported on inorganic oxides as heterogeneous and reusable catalysts for the selective preparation of alkoxymethyl ethers and their deprotections under different reaction conditions. Polyhedron, 2008, 27, 2612-2624.	1.0	16
51	H ₃ PW ₁₂ O ₄₀ â€" A selective, environmentally benign, and reusable catalyst for the preparation of methoxymethyl and ethoxymethyl ethers and their deprotections under mild conditions. Canadian Journal of Chemistry, 2008, 86, 831-840.	0.6	16
52	Solid state photochemistry of 1,4-dihydropyridines. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 3423-3425.	1.0	30