
Lulin Xue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5029855/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Confronting the Challenge of Modeling Cloud and Precipitation Microphysics. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001689.	3.8	154
2	Occurrence of lower cloud albedo in ship tracks. Atmospheric Chemistry and Physics, 2012, 12, 8223-8235.	4.9	103
3	Precipitation formation from orographic cloud seeding. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1168-1173.	7.1	67
4	Long-Term Prediction of Soybean Rust Entry into the Continental United States. Plant Disease, 2006, 90, 840-846.	1.4	64
5	Summertime dust storms over the Arabian Peninsula and impacts on radiation, circulation, cloud development and rain. Atmospheric Research, 2021, 250, 105364.	4.1	61
6	Implementation of a Silver Iodide Cloud-Seeding Parameterization in WRF. Part II: 3D Simulations of Actual Seeding Events and Sensitivity Tests. Journal of Applied Meteorology and Climatology, 2013, 52, 1458-1476.	1.5	59
7	Implementation of a Silver Iodide Cloud-Seeding Parameterization in WRF. Part I: Model Description and Idealized 2D Sensitivity Tests. Journal of Applied Meteorology and Climatology, 2013, 52, 1433-1457.	1.5	57
8	Modeling the impacts of climate change on nitrogen losses and crop yield in a subsurface drained field. Climatic Change, 2015, 129, 323-335.	3.6	56
9	Idealized Simulations of a Squall Line from the MC3E Field Campaign Applying Three Bin Microphysics Schemes: Dynamic and Thermodynamic Structure. Monthly Weather Review, 2017, 145, 4789-4812.	1.4	55
10	Intercomparison of aerosol-cloud-precipitation interactions in stratiform orographic mixed-phase clouds. Atmospheric Chemistry and Physics, 2010, 10, 8173-8196.	4.9	54
11	Effects of Aerosol Solubility and Regeneration on Warm-Phase Orographic Clouds and Precipitation Simulated by a Detailed Bin Microphysical Scheme. Journals of the Atmospheric Sciences, 2010, 67, 3336-3354.	1.7	51
12	A comprehensive numerical study of aerosol-cloud-precipitation interactions in marine stratocumulus. Atmospheric Chemistry and Physics, 2011, 11, 9749-9769.	4.9	49
13	A Transformational Approach to Winter Orographic Weather Modification Research: The SNOWIE Project. Bulletin of the American Meteorological Society, 2019, 100, 71-92.	3.3	49
14	The Uniqueness of the Soybean Rust Pathosystem: An Improved Understanding of the Risk in Different Regions of the World. Plant Disease, 2010, 94, 796-806.	1.4	44
15	A Case Study of Radar Observations and WRF LES Simulations of the Impact of Ground-Based Glaciogenic Seeding on Orographic Clouds and Precipitation. Part I: Observations and Model Validations. Journal of Applied Meteorology and Climatology, 2014, 53, 2264-2286.	1.5	41
16	Effects of Aerosol Solubility and Regeneration on Mixed-Phase Orographic Clouds and Precipitation. Journals of the Atmospheric Sciences, 2012, 69, 1994-2010.	1.7	38
17	Wintertime Orographic Cloud Seeding—A Review. Journal of Applied Meteorology and Climatology, 2019, 58, 2117-2140.	1.5	38
18	The Dispersion of Silver Iodide Particles from Ground-Based Generators over Complex Terrain. Part II: WRF Large-Eddy Simulations versus Observations. Journal of Applied Meteorology and Climatology, 2014, 53, 1342-1361.	1.5	37

Lulin Xue

#	Article	IF	CITATIONS
19	The impact of aerosol optical depth assimilation on aerosol forecasts and radiative effects during a wild fire event over the United States. Geoscientific Model Development, 2014, 7, 2709-2715.	3.6	32
20	Quantifying snowfall from orographic cloud seeding. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5190-5195.	7.1	32
21	Comparison of three microphysics parameterization schemes in the WRF model for an extreme rainfall event in the coastal metropolitan City of Guangzhou, China. Atmospheric Research, 2020, 240, 104939.	4.1	30
22	Assessing climate change impacts on greenhouse gas emissions, N losses in drainage and crop production in a subsurface drained field. Science of the Total Environment, 2020, 705, 135969.	8.0	29
23	RZWQM2 simulated management practices to mitigate climate change impacts on nitrogen losses and corn production. Environmental Modelling and Software, 2016, 84, 99-111.	4.5	28
24	A Case Study of Radar Observations and WRF LES Simulations of the Impact of Ground-Based Glaciogenic Seeding on Orographic Clouds and Precipitation. Part II: AgI Dispersion and Seeding Signals Simulated by WRF. Journal of Applied Meteorology and Climatology, 2016, 55, 445-464.	1.5	27
25	Dynamics of Cloud-Top Generating Cells in Winter Cyclones. Part I: Idealized Simulations in the Context of Field Observations. Journals of the Atmospheric Sciences, 2016, 73, 1507-1527.	1.7	23
26	WRF Grayâ€Zone Simulations of Precipitation Over the Middleâ€East and the UAE: Impacts of Physical Parameterizations and Resolution. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034648.	3.3	23
27	The effects of mineral dust particles, aerosol regeneration and ice nucleation parameterizations on clouds and precipitation. Atmospheric Chemistry and Physics, 2012, 12, 9303-9320.	4.9	22
28	A Case Study of Cloud Radar Observations and Large-Eddy Simulations of a Shallow Stratiform Orographic Cloud, and the Impact of Glaciogenic Seeding. Journal of Applied Meteorology and Climatology, 2017, 56, 1285-1304.	1.5	22
29	Evaluation of the Wyoming Weather Modification Pilot Project (WWMPP) Using Two Approaches: Traditional Statistics and Ensemble Modeling. Journal of Applied Meteorology and Climatology, 2018, 57, 2639-2660.	1.5	22
30	Bridging the condensation–collision size gap: a direct numerical simulation of continuous droplet growth in turbulent clouds. Atmospheric Chemistry and Physics, 2018, 18, 7251-7262.	4.9	22
31	Dynamics of Cloud-Top Generating Cells in Winter Cyclones. Part II: Radiative and Instability Forcing. Journals of the Atmospheric Sciences, 2016, 73, 1529-1553.	1.7	21
32	The Roles of Mineral Dust as Cloud Condensation Nuclei and Ice Nuclei During the Evolution of a Hail Storm. Journal of Geophysical Research D: Atmospheres, 2019, 124, 14262-14284.	3.3	20
33	A Trial to Improve Surface Heat Exchange Simulation through Sensitivity Experiments over a Desert Steppe Site. Journal of Hydrometeorology, 2014, 15, 664-684.	1.9	18
34	The Dispersion of Silver Iodide Particles from Ground-Based Generators over Complex Terrain. Part I: Observations with Acoustic Ice Nucleus Counters. Journal of Applied Meteorology and Climatology, 2014, 53, 1325-1341.	1.5	17
35	WRF Large-eddy Simulations of chemical tracer deposition and seeding effect over complex terrain from ground- and aircraft-based AgI Âgenerators. Atmospheric Research, 2017, 190, 89-103.	4.1	17
36	High-Resolution Historical Climate Simulations over Alaska. Journal of Applied Meteorology and Climatology, 2018, 57, 709-731.	1.5	17

LULIN XUE

#	Article	IF	CITATIONS
37	Impact of aerosols and turbulence on cloud droplet growth: an in-cloud seeding case study using a parcel–DNS (direct numerical simulation) approach. Atmospheric Chemistry and Physics, 2020, 20, 10111-10124.	4.9	17
38	Large-Eddy Simulations of the Impact of Ground-Based Glaciogenic Seeding on Shallow Orographic Convection: A Case Study. Journal of Applied Meteorology and Climatology, 2017, 56, 69-84.	1.5	16
39	Evaluation of Orographic Cloud Seeding Using a Bin Microphysics Scheme: Two-Dimensional Approach. Journal of Applied Meteorology and Climatology, 2017, 56, 1443-1462.	1.5	16
40	Cloud–Aerosol–Turbulence Interactions: Science Priorities and Concepts for a Large-Scale Laboratory Facility. Bulletin of the American Meteorological Society, 2020, 101, E1026-E1035.	3.3	16
41	How will rainfall change over Hawaiâ€~i in the future? High-resolution regional climate simulation of the Hawaiian Islands. Bulletin of Atmospheric Science and Technology, 2020, 1, 459-490.	0.9	15
42	Analysis of aerosol–cloud interactions and their implications for precipitation formation using aircraft observations over the United Arab Emirates. Atmospheric Chemistry and Physics, 2021, 21, 12543-12560.	4.9	14
43	Dynamics of Cloud-Top Generating Cells in Winter Cyclones. Part III: Shear and Convective Organization. Journals of the Atmospheric Sciences, 2017, 74, 2879-2897.	1.7	13
44	Wind Resource Assessment for Alaska's Offshore Regions: Validation of a 14-Year High-Resolution WRF Data Set. Energies, 2019, 12, 2780.	3.1	13
45	Modeling impacts of climate change on crop yield and phosphorus loss in a subsurface drained field of Lake Erie region, Canada. Agricultural Systems, 2021, 190, 103110.	6.1	12
46	A study of the fraction of warm rain in a pre-summer rainfall event over South China. Atmospheric Research, 2021, 262, 105792.	4.1	11
47	The impact of boundary layer turbulence on snow growth and precipitation: Idealized Large Eddy Simulations. Atmospheric Research, 2018, 204, 54-66.	4.1	10
48	Convection-Permitting Regional Climate Simulations in the Arabian Gulf Region Using WRF Driven by Bias-Corrected GCM Data. Journal of Climate, 2020, 33, 7787-7815.	3.2	10
49	Modeling climate change impact on streamflow as affected by snowmelt in Nicolet River Watershed, Quebec. Computers and Electronics in Agriculture, 2020, 178, 105756.	7.7	9
50	Effects of Localâ€Scale Orography and Urban Heat Island on the Initiation of a Recordâ€Breaking Rainfall Event. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034839.	3.3	9
51	Hygroscopic Seeding Effects of Giant Aerosol Particles Simulated by the Lagrangianâ€Particleâ€Based Direct Numerical Simulation. Geophysical Research Letters, 2021, 48, e2021GL094621.	4.0	9
52	Evaluation of Orographic Cloud Seeding Using a Bin Microphysics Scheme: Three-Dimensional Simulation of Real Cases. Journal of Applied Meteorology and Climatology, 2020, 59, 1537-1555.	1.5	9
53	Cloud-resolving model for weather modification in China. Science Bulletin, 2012, 57, 1055-1061.	1.7	7
54	Ensemble calibration and sensitivity study of a surface CO ₂ flux scheme using an optimization algorithm. Journal of Geophysical Research, 2008, 113, .	3.3	6

Lulin Xue

#	Article	IF	CITATIONS
55	Challenges for Cloud Modeling in the Context of Aerosol–Cloud–Precipitation Interactions. Bulletin of the American Meteorological Society, 2017, 98, 1749-1755.	3.3	6
56	Microphysical Characteristics and Evolution of Seeded Orographic Clouds. Journal of Applied Meteorology and Climatology, 2021, 60, 909-934.	1.5	6
57	How Does the Melting Impact Charge Separation in Squall Line? A Bin Microphysics Simulation Study. Geophysical Research Letters, 2020, 47, e2020GL090840.	4.0	5
58	An Assessment of Winter Orographic Precipitation and Cloud-Seeding Potential in Wyoming. Journal of Applied Meteorology and Climatology, 2020, 59, 1217-1238.	1.5	5
59	Progress and Challenges in Modeling Dynamics–Microphysics Interactions: From the Pi Chamber to Monsoon Convection. Bulletin of the American Meteorological Society, 2022, 103, E1413-E1420.	3.3	5
60	The Influence of Hygroscopic Flare Seeding on Drop Size Distribution Over Southeast Queensland. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033771.	3.3	4
61	Impact of hygroscopic seeding on the initiation of precipitation formation: results of a hybrid bin microphysics parcel model. Atmospheric Chemistry and Physics, 2021, 21, 16143-16159.	4.9	4
62	Characteristics of Raindrop Size Distributions in Chongqing Observed by a Dense Network of Disdrometers. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035172.	3.3	4
63	Largeâ€Scale Forcing Impact on the Development of Shallow Convective Clouds Revealed From LASSO Largeâ€Eddy Simulations. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035208.	3.3	3
64	Modeling tillage and manure application on soil phosphorous loss under climate change. Nutrient Cycling in Agroecosystems, 2022, 122, 219-239.	2.2	3
65	The FastEddy [®] Residentâ€CPU Accelerated Largeâ€Eddy Simulation Framework: Moist Dynamics Extension, Validation and Sensitivities of Modeling Nonâ€Precipitating Shallow Cumulus Clouds. Journal of Advances in Modeling Earth Systems, 2022, 14, .	3.8	3
66	Comparison between Observed and Simulated Agl Seeding Impacts in a Well-Observed Case from the SNOWIE Field Program. Journal of Applied Meteorology and Climatology, 2022, 61, 345-367.	1.5	3
67	Experimental, Observational, and Numerical Research on Intentional and Inadvertent Weather Modification. Advances in Meteorology, 2018, 2018, 1-2.	1.6	1
68	Potential for Ground-Based Glaciogenic Cloud Seeding over Mountains in the Interior Western United States and Anticipated Changes in a Warmer Climate. Journal of Applied Meteorology and Climatology, 2021, 60, 1245-1263.	1.5	1
69	Characterizing warm atmospheric boundary layer over land by combining Raman and Doppler lidar measurements. Optics Express, 2022, 30, 11892.	3.4	1