
Krishan K Verma

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5029790/publications.pdf Version: 2024-02-01

KDICHAN K VEDMA

#	Article	IF	CITATIONS
1	Recent Developments in Enzymatic Antioxidant Defence Mechanism in Plants with Special Reference to Abiotic Stress. Biology, 2021, 10, 267.	2.8	228
2	Coping with the Challenges of Abiotic Stress in Plants: New Dimensions in the Field Application of Nanoparticles. Plants, 2021, 10, 1221.	3.5	112
3	Recent Trends in Nano-Fertilizers for Sustainable Agriculture under Climate Change for Global Food Security. Nanomaterials, 2022, 12, 173.	4.1	103
4	Diversity of nitrogen-fixing rhizobacteria associated with sugarcane: a comprehensive study of plant-microbe interactions for growth enhancement in Saccharum spp BMC Plant Biology, 2020, 20, 220.	3.6	80
5	The Impact of Silicon on Photosynthetic and Biochemical Responses of Sugarcane under Different Soil Moisture Levels. Silicon, 2020, 12, 1355-1367.	3.3	68
6	Mitigating Climate Change for Sugarcane Improvement: Role of Silicon in Alleviating Abiotic Stresses. Sugar Tech, 2020, 22, 741-749.	1.8	67
7	Nano-Enabled Products: Challenges and Opportunities for Sustainable Agriculture. Plants, 2021, 10, 2727.	3.5	62
8	Characteristics of Leaf Stomata and Their Relationship with Photosynthesis in <i>Saccharum officinarum</i> Under Drought and Silicon Application. ACS Omega, 2020, 5, 24145-24153.	3.5	56
9	Foliar application of silicon boosts growth, photosynthetic leaf gas exchange, antioxidative response and resistance to limited water irrigation in sugarcane (Saccharum officinarum L.). Plant Physiology and Biochemistry, 2021, 166, 582-592.	5.8	49
10	Nanotechnology in the Restoration of Polluted Soil. Nanomaterials, 2022, 12, 769.	4.1	49
11	Nano-biochar: A novel solution for sustainable agriculture and environmental remediation. Environmental Research, 2022, 210, 112891.	7.5	41
12	Recent Development in Micropropagation Techniques for Rare Plant Species. Plants, 2020, 9, 1733.	3.5	33
13	Comparative analysis of sugarcane root transcriptome in response to the plant growth-promoting Burkholderia anthina MYSP113. PLoS ONE, 2020, 15, e0231206.	2.5	33
14	Influence of Silicon on Biocontrol Strategies to Manage Biotic Stress for Crop Protection, Performance, and Improvement. Plants, 2021, 10, 2163.	3.5	31
15	Interactive Role of Silicon and Plant–Rhizobacteria Mitigating Abiotic Stresses: A New Approach for Sustainable Agriculture and Climate Change. Plants, 2020, 9, 1055.	3.5	30
16	Silicon Supply Improves Leaf Gas Exchange, Antioxidant Defense System and Growth in Saccharum officinarum Responsive to Water Limitation. Plants, 2020, 9, 1032.	3.5	29
17	Investigation of Defensive Role of Silicon during Drought Stress Induced by Irrigation Capacity in Sugarcane: Physiological and Biochemical Characteristics. ACS Omega, 2021, 6, 19811-19821.	3.5	28
18	Photosynthetic gas exchange, chlorophyll fluorescence, antioxidant enzymes, and growth responses of Jatropha curcas during soil flooding. Turkish Journal of Botany, 2014, 38, 130-140.	1.2	27

Krishan K Verma

#	Article	IF	CITATIONS
19	Proteomic Analysis of the Resistance Mechanisms in Sugarcane during Sporisorium scitamineum Infection. International Journal of Molecular Sciences, 2019, 20, 569.	4.1	27
20	Unraveling Nitrogen Fixing Potential of Endophytic Diazotrophs of Different Saccharum Species for Sustainable Sugarcane Growth. International Journal of Molecular Sciences, 2022, 23, 6242.	4.1	25
21	Phenolic and Volatile Compounds in the Production of Sugarcane Vinegar. ACS Omega, 2020, 5, 30587-30595.	3.5	24
22	Insights into the Bacterial and Nitric Oxide-Induced Salt Tolerance in Sugarcane and Their Growth-Promoting Abilities. Microorganisms, 2021, 9, 2203.	3.6	23
23	Recent advances in metabolic engineering of microorganisms for advancing lignocellulose-derived biofuels. Bioengineered, 2022, 13, 8135-8163.	3.2	20
24	Predication of Photosynthetic Leaf Gas Exchange of Sugarcane (<i>Saccharum</i> spp) Leaves in Response to Leaf Positions to Foliar Spray of Potassium Salt of Active Phosphorus under Limited Water Irrigation. ACS Omega, 2021, 6, 2396-2409.	3.5	19
25	Developing mathematical model for diurnal dynamics of photosynthesis in <i>Saccharum officinarum</i> responsive to different irrigation and silicon application. PeerJ, 2020, 8, e10154.	2.0	16
26	Developing a mathematical model for variation of physiological responses of Jatropha curcas leaves depending on leaf positions under soil flooding. Acta Physiologiae Plantarum, 2012, 34, 1435-1443.	2.1	12
27	An approach to develop a model for describing the influence of fluoride-contaminated irrigation water on physiological responses in poplar (Populus deltoides clone S7C15). Acta Physiologiae Plantarum, 2013, 35, 3357-3364.	2.1	11
28	Photosynthetic characteristics of red and green leaves in growing seedlings of Jatropha curcas. Turkish Journal of Biology, 2014, 38, 457-468.	0.8	4
29	Influence of fluoride phytotoxicity in germinating seedlings of Pisum sativum: modeling of morpho-physiological traits. Vegetos, 2022, 35, 736-746.	1.5	4
30	Developing mathematical model for diurnal variations of photosynthetic responses in Jatropha curcas L. under soil flooding. Vegetos, 2021, 34, 212-219.	1.5	2
31	Fluoride Inhibits Root Water Transport and Affects Morpho-Physio-Biochemical Characteristics in Guar (Cyamopsis tetragonoloba). Indian Journal of Agricultural Biochemistry, 2016, 29, 227.	0.0	0
32	Phytotoxicity of Fluoride in Guar (Cyamopsis tetragonoloba) Cultivars and its Effect on Morpho-Physiological and Biochemical Traits. Indian Journal of Agricultural Biochemistry, 2016, 29, 219.	0.0	0
33	PREDICTION OF PHOTOSYNTHETIC RESPONSES BY MATHEMATICAL MODEL. International Journal of Research -GRANTHAALAYAH, 2020, 8, 102-120.	0.1	0
34	Diurnal and seasonal gas exchange characteristics of Jatropha curcas leaves. Vegetos, 0, , 1.	1.5	0