
Laura L Hammitt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/502965/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Causes of severe pneumonia requiring hospital admission in children without HIV infection from Africa and Asia: the PERCH multi-country case-control study. Lancet, The, 2019, 394, 757-779.	6.3	569
2	Invasive Pneumococcal Disease Caused by Nonvaccine Serotypes Among Alaska Native Children With High Levels of 7-Valent Pneumococcal Conjugate Vaccine Coverage. JAMA - Journal of the American Medical Association, 2007, 297, 1784.	3.8	537
3	Indirect Effect of Conjugate Vaccine on Adult Carriage ofStreptococcus pneumoniae:An Explanation of Trends in Invasive Pneumococcal Disease. Journal of Infectious Diseases, 2006, 193, 1487-1494.	1.9	234
4	Population effect of 10-valent pneumococcal conjugate vaccine on nasopharyngeal carriage of Streptococcus pneumoniae and non-typeable Haemophilus influenzae in Kilifi, Kenya: findings from cross-sectional carriage studies. The Lancet Global Health, 2014, 2, e397-e405.	2.9	175
5	A Preliminary Study of Pneumonia Etiology Among Hospitalized Children in Kenya. Clinical Infectious Diseases, 2012, 54, S190-S199.	2.9	132
6	Effect of ten-valent pneumococcal conjugate vaccine on invasive pneumococcal disease and nasopharyngeal carriage in Kenya: a longitudinal surveillance study. Lancet, The, 2019, 393, 2146-2154.	6.3	111
7	Added Value of an Oropharyngeal Swab in Detection of Viruses in Children Hospitalized with Lower Respiratory Tract Infection. Journal of Clinical Microbiology, 2011, 49, 2318-2320.	1.8	97
8	Association of C-Reactive Protein With Bacterial and Respiratory Syncytial Virus–Associated Pneumonia Among Children Aged <5 Years in the PERCH Study. Clinical Infectious Diseases, 2017, 64, S378-S386.	2.9	84
9	ls Higher Viral Load in the Upper Respiratory Tract Associated With Severe Pneumonia? Findings From the PERCH Study. Clinical Infectious Diseases, 2017, 64, S337-S346.	2.9	81
10	The Alaska Haemophilus influenzae Type b Experience: Lessons in Controlling a Vaccine-Preventable Disease. Pediatrics, 2006, 118, e421-e429.	1.0	73
11	Specimen Collection for the Diagnosis of Pediatric Pneumonia. Clinical Infectious Diseases, 2012, 54, S132-S139.	2.9	70
12	The Effect of Antibiotic Exposure and Specimen Volume on the Detection of Bacterial Pathogens in Children With Pneumonia. Clinical Infectious Diseases, 2017, 64, S368-S377.	2.9	70
13	Standardized Interpretation of Chest Radiographs in Cases of Pediatric Pneumonia From the PERCH Study. Clinical Infectious Diseases, 2017, 64, S253-S261.	2.9	62
14	Outbreak of Invasive Haemophilus influenzae Serotype a Disease. Pediatric Infectious Disease Journal, 2005, 24, 453-456.	1.1	59
15	Chest Radiograph Findings in Childhood Pneumonia Cases From the Multisite PERCH Study. Clinical Infectious Diseases, 2017, 64, S262-S270.	2.9	56
16	Does respiratory syncytial virus lower respiratory illness in early life cause recurrent wheeze of early childhood and asthma? Critical review of the evidence and guidance for future studies from a World Health Organization-sponsored meeting. Vaccine, 2020, 38, 2435-2448.	1.7	54
17	Impact of the 13-Valent Pneumococcal Conjugate Vaccine on Pneumococcal Carriage Among American Indians. Pediatric Infectious Disease Journal, 2016, 35, 907-914.	1.1	49
18	Colonization Density of the Upper Respiratory Tract as a Predictor of Pneumonia—Haemophilus influenzae, Moraxella catarrhalis, Staphylococcus aureus, and Pneumocystis jirovecii. Clinical Infectious Diseases, 2017, 64, S328-S336.	2.9	49

#	Article	IF	CITATIONS
19	The Enduring Challenge of Determining Pneumonia Etiology in Children: Considerations for Future Research Priorities. Clinical Infectious Diseases, 2017, 64, S188-S196.	2.9	48
20	Relating Pneumococcal Carriage Among Children to Disease Rates Among Adults Before and After the Introduction of Conjugate Vaccines. American Journal of Epidemiology, 2016, 183, 1055-1062.	1.6	45
21	Challenges in the diagnosis of paediatric pneumonia in intervention field trials: recommendations from a pneumonia field trial working group. Lancet Respiratory Medicine,the, 2019, 7, 1068-1083.	5.2	44
22	Effect of Haemophilus influenzae type b vaccination without a booster dose on invasive H influenzae type b disease, nasopharyngeal carriage, and population immunity in Kilifi, Kenya: a 15-year regional surveillance study. The Lancet Global Health, 2016, 4, e185-e194.	2.9	41
23	Effect of 10-valent pneumococcal conjugate vaccine on the incidence of radiologically-confirmed pneumonia and clinically-defined pneumonia in Kenyan children: an interrupted time-series analysis. The Lancet Global Health, 2019, 7, e337-e346.	2.9	41
24	Pertussis-Associated Pneumonia in Infants and Children From Low- and Middle-Income Countries Participating in the PERCH Study. Clinical Infectious Diseases, 2016, 63, S187-S196.	2.9	38
25	Genetic Polymorphisms of Group B Streptococcus scpB Alter Functional Activity of a Cell-Associated Peptidase That Inactivates C5a. Infection and Immunity, 2000, 68, 5018-5025.	1.0	34
26	lmmunogenicity, Impact on Carriage and Reactogenicity of 10-Valent Pneumococcal Non-Typeable Haemophilus influenzae Protein D Conjugate Vaccine in Kenyan Children Aged 1–4 Years: A Randomized Controlled Trial. PLoS ONE, 2014, 9, e85459.	1.1	33
27	Limited Utility of Polymerase Chain Reaction in Induced Sputum Specimens for Determining the Causes of Childhood Pneumonia in Resource-Poor Settings: Findings From the Pneumonia Etiology Research for Child Health (PERCH) Study. Clinical Infectious Diseases, 2017, 64, S289-S300.	2.9	31
28	Efficacy, safety and immunogenicity of a pneumococcal protein-based vaccine co-administered with 13-valent pneumococcal conjugate vaccine against acute otitis media in young children: A phase IIb randomized study. Vaccine, 2019, 37, 7482-7492.	1.7	31
29	Upper respiratory tract colonization with <i>Streptococcus pneumoniae</i> in adults. Expert Review of Vaccines, 2020, 19, 353-366.	2.0	31
30	Serotype Distribution of Remaining Pneumococcal Meningitis in the Mature PCV10/13 Period: Findings from the PSERENADE Project. Microorganisms, 2021, 9, 738.	1.6	31
31	Treatment Failure Among Kenyan Children With Severe Pneumonia—A Cohort Study. Pediatric Infectious Disease Journal, 2012, 31, e152-e157.	1.1	30
32	Evaluation of Pneumococcal Load in Blood by Polymerase Chain Reaction for the Diagnosis of Pneumococcal Pneumonia in Young Children in the PERCH Study. Clinical Infectious Diseases, 2017, 64, S357-S367.	2.9	30
33	Coverage and timeliness of vaccination and the validity of routine estimates: Insights from a vaccine registry in Kenya. Vaccine, 2018, 36, 7965-7974.	1.7	30
34	Global Landscape Review of Serotype-Specific Invasive Pneumococcal Disease Surveillance among Countries Using PCV10/13: The Pneumococcal Serotype Replacement and Distribution Estimation (PSERENADE) Project. Microorganisms, 2021, 9, 742.	1.6	30
35	Addressing the Analytic Challenges of Cross-Sectional Pediatric Pneumonia Etiology Data. Clinical Infectious Diseases, 2017, 64, S197-S204.	2.9	28
36	Upper airways colonisation of Streptococcus pneumoniae in adults aged 60 years and older: A systematic review of prevalence and individual participant data meta-analysis of risk factors. Journal of Infection, 2020, 81, 540-548.	1.7	28

#	Article	IF	CITATIONS
37	Standardization of Clinical Assessment and Sample Collection Across All PERCH Study Sites. Clinical Infectious Diseases, 2017, 64, S228-S237.	2.9	27
38	Effects of Vaccination with 10-Valent Pneumococcal Non-Typeable Haemophilus influenza Protein D Conjugate Vaccine (PHiD-CV) on the Nasopharyngeal Microbiome of Kenyan Toddlers. PLoS ONE, 2015, 10, e0128064.	1.1	26
39	The Predictive Performance of a Pneumonia Severity Score in Human Immunodeficiency Virus–negative Children Presenting to Hospital in 7 Low- and Middle-income Countries. Clinical Infectious Diseases, 2020, 70, 1050-1057.	2.9	26
40	Protecting children in low-income and middle-income countries from COVID-19. BMJ Global Health, 2020, 5, e002844.	2.0	26
41	Should Controls With Respiratory Symptoms Be Excluded From Case-Control Studies of Pneumonia Etiology? Reflections From the PERCH Study. Clinical Infectious Diseases, 2017, 64, S205-S212.	2.9	25
42	The impact of serotype-specific vaccination on phylodynamic parameters of Streptococcus pneumoniae and the pneumococcal pan-genome. PLoS Pathogens, 2018, 14, e1006966.	2.1	25
43	Pneumococcal conjugate vaccine induced IgG and nasopharyngeal carriage of pneumococci: Hyporesponsiveness and immune correlates of protection for carriage. Vaccine, 2017, 35, 4652-4657.	1.7	24
44	Frequency-dependent selection can forecast evolution in Streptococcus pneumoniae. PLoS Biology, 2020, 18, e3000878.	2.6	24
45	Nurturing Innovation at the Roots: The Success of COVID-19 Vaccination in American Indian and Alaska Native Communities. American Journal of Public Health, 2022, 112, 383-387.	1.5	24
46	Assessment of Carriage ofHaemophilus influenzaeType a after a Case of Invasive Disease. Clinical Infectious Diseases, 2006, 43, 386-387.	2.9	21
47	The Incremental Value of Repeated Induced Sputum and Gastric Aspirate Samples for the Diagnosis of Pulmonary Tuberculosis in Young Children With Acute Community-Acquired Pneumonia. Clinical Infectious Diseases, 2017, 64, S309-S316.	2.9	21
48	Introduction to the Epidemiologic Considerations, Analytic Methods, and Foundational Results From the Pneumonia Etiology Research for Child Health Study. Clinical Infectious Diseases, 2017, 64, S179-S184.	2.9	19
49	Pneumococcal protein antigen serology varies with age and may predict antigenic profile of colonizing isolates. Journal of Infectious Diseases, 2017, 215, jiw628.	1.9	18
50	Cohort Profile: The Kilifi Vaccine Monitoring Study. International Journal of Epidemiology, 2017, 46, dyw202.	0.9	17
51	Sustained reduction in vaccine-type invasive pneumococcal disease despite waning effects of a catch-up campaign in Kilifi, Kenya: A mathematical model based on pre-vaccination data. Vaccine, 2017, 35, 4561-4568.	1.7	17
52	Trends in bednet ownership and usage, and the effect of bednets on malaria hospitalization in the Kilifi Health and Demographic Surveillance System (KHDSS): 2008–2015. BMC Infectious Diseases, 2017, 17, 720.	1.3	17
53	Sustaining pneumococcal vaccination after transitioning from Gavi support: a modelling and cost-effectiveness study in Kenya. The Lancet Global Health, 2019, 7, e644-e654.	2.9	16
54	Association of Laboratory Methods, Colonization Density, and Age With Detection of Streptococcus pneumoniae in the Nasopharynx. American Journal of Epidemiology, 2019, 188, 2110-2119.	1.6	14

#	Article	IF	CITATIONS
55	The Etiology of Pneumonia From Analysis of Lung Aspirate and Pleural Fluid Samples: Findings From the Pneumonia Etiology Research for Child Health (PERCH) Study. Clinical Infectious Diseases, 2021, 73, e3788-e3796.	2.9	14
56	Digital auscultation in PERCH: Associations with chest radiography and pneumonia mortality in children. Pediatric Pulmonology, 2020, 55, 3197-3208.	1.0	13
57	The Etiology of Childhood Pneumonia in Mali. Pediatric Infectious Disease Journal, 2021, 40, S18-S28.	1.1	13
58	The Etiology of Childhood Pneumonia in The Gambia. Pediatric Infectious Disease Journal, 2021, 40, S7-S17.	1.1	12
59	The Etiology of Pneumonia in HIV-infected Zambian Children. Pediatric Infectious Disease Journal, 2021, 40, S50-S58.	1.1	12
60	Changes in Invasive Pneumococcal Disease Caused by Streptococcus pneumoniae Serotype 1 following Introduction of PCV10 and PCV13: Findings from the PSERENADE Project. Microorganisms, 2021, 9, 696.	1.6	10
61	The Etiology of Pneumonia in Zambian Children. Pediatric Infectious Disease Journal, 2021, 40, S40-S49.	1.1	10
62	The Etiology of Pneumonia in HIV-uninfected South African Children. Pediatric Infectious Disease Journal, 2021, 40, S59-S68.	1.1	10
63	Reduction of childhood pneumonia mortality in the Sustainable Development era. Lancet Respiratory Medicine,the, 2016, 4, 932-933.	5.2	9
64	The burden of Staphylococcus aureus among Native Americans on the Navajo Nation. PLoS ONE, 2019, 14, e0213207.	1.1	9
65	Panel 8: Vaccines and immunology. International Journal of Pediatric Otorhinolaryngology, 2020, 130, 109839.	0.4	9
66	Epidemiology of the Rhinovirus (RV) in African and Southeast Asian Children: A Case-Control Pneumonia Etiology Study. Viruses, 2021, 13, 1249.	1.5	9
67	The Etiology of Pneumonia in HIV-uninfected Children in Kilifi, Kenya. Pediatric Infectious Disease Journal, 2021, 40, S29-S39.	1.1	9
68	Immunogenicity, Safety, and Tolerability of V114, a 15-Valent Pneumococcal Conjugate Vaccine, in Immunocompetent Adults Aged 18–49 Years With or Without Risk Factors for Pneumococcal Disease: A Randomized Phase 3 Trial (PNEU-DAY). Open Forum Infectious Diseases, 2022, 9, ofab605.	0.4	9
69	The Etiology of Childhood Pneumonia in Bangladesh. Pediatric Infectious Disease Journal, 2021, 40, S79-S90.	1.1	8
70	Etiology and Clinical Characteristics of Severe Pneumonia Among Young Children in Thailand. Pediatric Infectious Disease Journal, 2021, 40, S91-S100.	1.1	8
71	High Burden of Staphylococcus aureus Among Native American Individuals on the White Mountain Apache Tribal Lands. Open Forum Infectious Diseases, 2020, 7, ofaa061.	0.4	6
72	The Etiology of Pneumonia in HIV-1-infected South African Children in the Era of Antiretroviral Treatment. Pediatric Infectious Disease Journal, 2021, 40, S69-S78.	1.1	6

#	Article	IF	CITATIONS
73	Upper Respiratory Tract Co-detection of Human Endemic Coronaviruses and High-density Pneumococcus Associated With Increased Severity Among HIV-Uninfected Children Under 5 Years Old in the PERCH Study. Pediatric Infectious Disease Journal, 2021, 40, 503-512.	1.1	5
74	Carriage prevalence and genomic epidemiology of Staphylococcus aureus among Native American children and adults in the Southwestern USA. Microbial Genomics, 2022, 8, .	1.0	5
75	Water quality, availability, and acute gastroenteritis on the Navajo Nation – a pilot case-control study. Journal of Water and Health, 2018, 16, 1018-1028.	1.1	4
76	Introduction to the Site-specific Etiologic Results From the Pneumonia Etiology Research for Child Health (PERCH) Study. Pediatric Infectious Disease Journal, 2021, 40, S1-S6.	1.1	4
77	Invasive Early-Onset Neonatal Group B Streptococcal Cases – Alaska, 2000–2004. Maternal and Child Health Journal, 2007, 11, 91-95.	0.7	3
78	Motavizumab, RSV, and subsequent wheezing – Authors' reply. Lancet Infectious Diseases, The, 2016, 16, 1329-1330.	4.6	3
79	2213. Etiology of Community-Acquired Pneumonia (CAP) in Hospitalized Native American Adults. Open Forum Infectious Diseases, 2019, 6, S754-S755.	0.4	1
80	453. High Burden of Invasive and Severe Group A Streptococcus Disease Among Native Americans on the White Mountain Apache Tribal Lands. Open Forum Infectious Diseases, 2019, 6, S223-S223.	0.4	1
81	Invasive <i>Haemophilus influenzae</i> Type a Disease: An Unmet Health Need. Clinical Infectious Diseases, 2021, 73, e287-e289.	2.9	1
82	Tribal Sovereignty in Research and Community Engagement for a COVID-19 Vaccine Clinical Trial on the Navajo Nation: Beyond a Facebook Town Hall. American Journal of Public Health, 2021, 111, 1431-1432.	1.5	1
83	444. Better Efficiency, Same Accuracy: Point-of-Care PCR for the Detection of Group A streptococcus in Noninvasive Skin Infections. Open Forum Infectious Diseases, 2019, 6, S219-S219.	0.4	0
84	555. The Burden of Invasive Staphylococcus Aureus Disease Among Native Americans on the Navajo Nation. Open Forum Infectious Diseases, 2019, 6, S263-S263.	0.4	0
85	1835. High Burden of Invasive Staphylococcus aureus Disease Among Native Americans on the White Mountain Apache Tribal Lands. Open Forum Infectious Diseases, 2019, 6, S44-S45.	0.4	0
86	Evaluation of indoor PM2.5 concentrations in a Native American Community: a pilot study. Journal of Exposure Science and Environmental Epidemiology, 2021, , .	1.8	0
87	Frequency-dependent selection can forecast evolution in Streptococcus pneumoniae. , 2020, 18, e3000878.		0
88	Frequency-dependent selection can forecast evolution in Streptococcus pneumoniae. , 2020, 18, e3000878.		0
89	Frequency-dependent selection can forecast evolution in Streptococcus pneumoniae. , 2020, 18, e3000878.		0
90	Frequency-dependent selection can forecast evolution in Streptococcus pneumoniae. , 2020, 18, e3000878.		0

6

#	Article	IF	CITATIONS
91	Frequency-dependent selection can forecast evolution in Streptococcus pneumoniae. , 2020, 18, e3000878.		0
92	Frequency-dependent selection can forecast evolution in Streptococcus pneumoniae. , 2020, 18, e3000878.		0