Huangdi Feng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5029346/publications.pdf

Version: 2024-02-01

		471061	552369
55	862	17	26
papers	citations	h-index	g-index
68	68	68	488
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Synthesis of nitrogen-tethered 1,6-enynes through Cul/TFA catalysis. Organic Chemistry Frontiers, 2022, 9, 394-399.	2.3	5
2	Pd-Catalyzed Ring Restructuring of Oxazolidines with Alkenes Leading to Fused Polycyclic Indolizines. Organic Letters, 2022, 24, 1232-1236.	2.4	10
3	A highly efficient metal-free hydrocarbonylation of alkynes with propargylamines and water. Green Chemistry, 2022, 24, 1978-1982.	4.6	11
4	Accessing Nâ€Propargyl Amino Alcohols through Cu(I)â€Catalyzed A ³ â€Coupling/Annulation and Bi(III)â€Promoted Ringâ€Opening. ChemistrySelect, 2022, 7, .	0.7	4
5	Selectivity Controlled Hydroamination of Alkynes to Sulfonyl Fluoride Hubs: Development and Application. Journal of Organic Chemistry, 2022, 87, 4998-5004.	1.7	4
6	Direct Access to 4-Substituted Isoquinolones via a Sequential Pd-Catalyzed Cyclization/Base-Promoted Aromatization/Ring-Opening of N-Propargyl-1,3-oxazolidines. Molecular Catalysis, 2022, 522, 112231.	1.0	2
7	A lysosome specific ratiometric fluorescent probe for detection of bisulfite ion based on hybrid coumarin-benzimidazolium compounds. Phosphorus, Sulfur and Silicon and the Related Elements, 2021, 196, 321-327.	0.8	6
8	CF3SO3H-enabled cascade ring-opening/dearomatization of indole derivatives to polycyclic heterocycles. Organic and Biomolecular Chemistry, 2021, 19, 4469-4473.	1.5	8
9	Modular Synthesis of Unsymmetrical 1,4â€Diaminoâ€2â€butynes by Cu–Catalyzed Sequential Decarboxylative A 3 â€Coupling/Petasis Reaction/A 3 â€Coupling. Asian Journal of Organic Chemistry, 2021, 10, 816-819.	1.3	4
10	Cuâ€Catalyzed Selective Synthesis of Propargylamines via A ³ â€Coupling/ <i>Aza</i> àâ€Michael Addition Sequence: Amine Loading Controls the Selectivity. Asian Journal of Organic Chemistry, 2021, 10, 762-765.	1.3	3
11	Microwave-Assisted Cu(I)-Catalyzed Synthesis of Unsymmetrical 1,4-Diamino-2-butynes via Cross-A3-Coupling/Decarboxylative A3-Coupling. Journal of Organic Chemistry, 2021, 86, 14036-14043.	1.7	10
12	Recent advances in dearomatization of benzazoles, purines, and caffeine (microreview). Chemistry of Heterocyclic Compounds, 2021, 57, 525-527.	0.6	0
13	Glyoxylic Acid: A Carboxyl Groupâ€Assisted Metalâ€Free Decarboxylative Reaction Toward Propargylamines. European Journal of Organic Chemistry, 2021, 2021, 2448-2451.	1.2	5
14	Switchable Mono―and Dipropargylation of Amino Alcohols: A Unique Property of the Iodide Anion in Controlling Ringâ€Opening Alkynylation. European Journal of Organic Chemistry, 2021, 2021, 3676-3680.	1.2	7
15	Microwave-Assisted Palladium-Catalyzed Reductive Cyclization/Ring-Opening/Aromatization Cascade of Oxazolidines to Isoquinolines. Organic Letters, 2021, 23, 6578-6582.	2.4	17
16	Ynoate-Initiated Selective C–N Esterification of Tertiary Amines under Transition-Metal and Oxidant-Free Conditions. Synlett, 2021, 32, 713-717.	1.0	10
17	Recent Advances in the Synthesis and Ringâ€Opening Transformations of 2â€Oxazolidinones. Advanced Synthesis and Catalysis, 2021, 363, 5168-5195.	2.1	23
18	Chemodivergent Synthesis of Oxazolidin-2-ones via Cu-Catalyzed Carboxyl Transfer Annulation of Propiolic Acids with Amines. Journal of Organic Chemistry, 2021, 86, 16940-16947.	1.7	10

#	Article	IF	CITATIONS
19	Copper-catalyzed deaminative alkynylation of secondary amines with alkynes: selectivity switch in the synthesis of diverse propargylamines. Organic Chemistry Frontiers, 2021, 8, 6992-6997.	2.3	6
20	1D Fe3O4@CuSiO3 composites catalyzed decarboxylative A3-coupling for propargylamine synthesis. Chinese Chemical Letters, 2020, 31, 1558-1563.	4.8	25
21	<scp>Metalâ€Free</scp> Decarboxylation of α, <scp>βâ€Unsaturated</scp> Carboxylic Acids for Carbon–Carbon and Carbon–Heteroatom Coupling Reactions. Chinese Journal of Chemistry, 2020, 38, 1780-1792.	2.6	30
22	Lewis Acidâ€Free Ynoateâ€Mediated Chemoselective Reduction of Carboxylic Acids to Primary Alcohols. ChemistrySelect, 2020, 5, 8687-8690.	0.7	1
23	Synthesis of functionalized oxazolidines by multicomponent reactions of 1,2-amino alcohols (microreview). Chemistry of Heterocyclic Compounds, 2020, 56, 464-466.	0.6	8
24	Domino Decarboxylation–CO2 Fixation – a Route toward Cyclic Carbonates and Oxazolidinones (Microreview). Chemistry of Heterocyclic Compounds, 2020, 56, 506-508.	0.6	2
25	Metalâ€Free Decarboxylative A ³ â€Coupling/Pictet–Spengler Cascade Accessing Polycyclic Scaffolds: Propiolic Acids Exceed Alkynes. European Journal of Organic Chemistry, 2020, 2020, 1695-1699.	1.2	13
26	One-Pot Synthesis of Unsymmetrical 1,4-Diaminobutynes by Cu(I)-Catalyzed Cross-Coupling of Propiolic Acid, Secondary Amine, Aldehydes and Formaldehyde. Chinese Journal of Organic Chemistry, 2020, 40, 1290.	0.6	8
27	Carboxyl Transfer of α-Keto Acids toward Oxazolidinones via Decarboxylation/Fixation of Liberated CO ₂ . Journal of Organic Chemistry, 2019, 84, 10380-10387.	1.7	22
28	Synthetic Access to Secondary Propargylamines via a Copper-Catalyzed Oxidative Deamination/Alkynylation Cascade. Journal of Organic Chemistry, 2019, 84, 10501-10508.	1.7	18
29	Synthesis of \hat{I}^3 -(Arylamino)butyric Acid Derivatives via Ring-Opening Addition of Arylamines to Cyclopropane-1,1-Dicarboxylates. Russian Journal of Organic Chemistry, 2019, 55, 1432-1438.	0.3	6
30	Enol Ester Intermediate Induced Metalâ€Free Oxidative Coupling of Carboxylic Acids and Arylboronic Acids. European Journal of Organic Chemistry, 2019, 2019, 3921-3928.	1.2	10
31	Synthesis, characterization and biological activity of 1,3-diazaheteroaromatic derivatives by the ring-opening domino reaction. Journal of Molecular Structure, 2019, 1196, 245-251.	1.8	1
32	Chemo- and Diastereoselective Synthesis of <i>N</i> -Propargyl Oxazolidines through a Copper-Catalyzed Domino A ³ Reaction. Journal of Organic Chemistry, 2019, 84, 5046-5055.	1.7	25
33	Copperâ€Catalyzed Annulation/A ³ â€Coupling Cascade: Diastereodivergent Synthesis of Sterically Hindered Monocyclic Oxazolidines Bearing Multiple Stereocenters. European Journal of Organic Chemistry, 2019, 2019, 1931-1939.	1.2	18
34	A Highly Chemoselective Synthesis of Cyclic Divalent Propargylamines by Copperâ€Catalyzed Annulation/Double A ³ â€Couplings. European Journal of Organic Chemistry, 2018, 2018, 2039-2046.	1.2	14
35	Dual roles of ynoates: desymmetrization of dicarboxylic acids using trialkylamines as alkyl equivalents. Organic Chemistry Frontiers, 2018, 5, 2955-2959.	2.3	18
36	Direct Amidation of Carboxylic Acids through an Active \hat{l}_{\pm} -Acyl Enol Ester Intermediate. Journal of Organic Chemistry, 2018, 83, 7962-7969.	1.7	28

#	Article	IF	Citations
37	Highly Selective Synergistic Copper(I/II) atalyzed A ³ Cross Coupling/Decarboxylative A ³ Domino Reactions in Water. Asian Journal of Organic Chemistry, 2017, 6, 161-164.	1.3	19
38	Controlling chemoselectivity in copper-catalyzed decarboxylative A ³ /A ³ cross-couplings: direct formation of unsymmetrical 1,4-diamino-2-butynes. Organic Chemistry Frontiers, 2017, 4, 37-41.	2.3	33
39	A Metalâ€Free Approach Toward Saturated <i>N</i> à€Propargyl Heterocycles via an Annulation/Decarboxylative Coupling Sequence. Advanced Synthesis and Catalysis, 2015, 357, 2447-2452.	2.1	39
40	Decarboxylative dipropargylation of primary amines with propiolic acids and formaldehyde via metal-free coupling. Tetrahedron, 2015, 71, 2724-2728.	1.0	8
41	Multicomponent domino reactions of hydrazinecarbodithioates: concise access to 3-substituted 5-thiol-1,3,4-thiadiazolines. Organic and Biomolecular Chemistry, 2015, 13, 8177-8181.	1.5	14
42	Cul/CuBr2-catalyzed decarboxylative/A3 reaction of propiolic acids for the facile synthesis of 1,4-diheterocycle-2-butynes. Tetrahedron Letters, 2015, 56, 5676-5680.	0.7	14
43	Nano Cu-catalyzed efficient and selective reduction of nitroarenes under combined microwave and ultrasound irradiation. Sustainable Chemical Processes, 2014, 2, .	2.3	30
44	Mild and Catalyst-Free Petasis/Decarboxylative Domino Reaction: Chemoselective Synthesis of <i>N</i> -Benzyl Propargylamines. Journal of Organic Chemistry, 2014, 79, 11812-11818.	1.7	34
45	Pd-NHC-catalyzed synthesis of diaryl ketones. Tetrahedron Letters, 2014, 55, 6451-6454.	0.7	8
46	Copper(I)â€Catalyzed Decarboxylative Coupling of Propiolic Acids with Secondary Amines and Aldehydes. European Journal of Organic Chemistry, 2014, 2014, 5346-5350.	1.2	25
47	FeCl3-promoted synthesis of 1,3,4-thiadiazoles under combined microwave and ultrasound irradiation in water. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2013, 144, 681-686.	0.9	10
48	Aqueous heterogeneous synthesis of polysubstituted 2,6-dicyanoanilines via combined microwave and ultrasound-assisted multicomponent reaction. Green Processing and Synthesis, 2012, 1, .	1.3	0
49	Synthesis of Symmetric 1,4-Diamino-2-Butynes via a Cu(I)-Catalyzed One-Pot A3-Coupling/Decarboxylative Coupling of a Propiolic Acid, an Aldehyde, and an Amine. Journal of Organic Chemistry, 2012, 77, 5149-5154.	1.7	51
50	Regioselective Cu(I)-Catalyzed Tandem A ³ -Coupling/Decarboxylative Coupling to 3-Amino-1,4-Enynes. Organic Letters, 2012, 14, 1942-1945.	2.4	42
51	Synthesis of polysubstituted pyridines under combined microwave and ultrasound irradiation: K2CO3-promoted tandem addition/cyclization/hydrogen shift process. Tetrahedron Letters, 2012, 53, 1160-1162.	0.7	25
52	Synthesis of Oxazolidinâ€2â€ones <i>via</i> a Copper(I) atalyzed Tandem Decarboxylative/Carboxylative Cyclization of a Propiolic Acid, a Primary Amine and an Aldehyde. Advanced Synthesis and Catalysis, 2012, 354, 505-509.	2.1	53
53	Microwave-Assisted Decarboxylative Three-Component Coupling of a 2-Oxoacetic Acid, an Amine, and an Alkyne. Journal of Organic Chemistry, 2011, 76, 7608-7613.	1.7	61
54	Catalystâ€Free Hydrogen Proton Transfer Reduction of Nitrobenzamides to Aminobenzamides with i PrOH/KOH System. Asian Journal of Organic Chemistry, 0, , .	1.3	2

Huangdi Feng

#	Article	lF	CITATIONS
55	Synthesis of pyrroles from propargylamines and their derivatives: an update (microreview). Chemistry of Heterocyclic Compounds, 0, , .	0.6	2