Carlos E Fardella

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5029156/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Case Detection, Diagnosis, and Treatment of Patients with Primary Aldosteronism: An Endocrine Society Clinical Practice Guideline. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 3266-3281.	3.6	1,440
2	Increased Diagnosis of Primary Aldosteronism, Including Surgically Correctable Forms, in Centers from Five Continents. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 1045-1050.	3.6	862
3	Primary Aldosteronism and Hypertensive Disease. Hypertension, 2003, 42, 161-165.	2.7	433
4	Primary Hyperaldosteronism in Essential Hypertensives: Prevalence, Biochemical Profile, and Molecular Biology ¹ . Journal of Clinical Endocrinology and Metabolism, 2000, 85, 1863-1867.	3.6	381
5	Role of the Renin-Angiotensin-Aldosterone System beyond Blood Pressure Regulation: Molecular and Cellular Mechanisms Involved in End-Organ Damage during Arterial Hypertension. International Journal of Molecular Sciences, 2016, 17, 797.	4.1	197
6	Comparison of Confirmatory Tests for the Diagnosis of Primary Aldosteronism. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 2618-2623.	3.6	174
7	Aldosterone Promotes Autoimmune Damage by Enhancing Th17-Mediated Immunity. Journal of Immunology, 2010, 184, 191-202.	0.8	147
8	High sodium intake is associated with increased glucocorticoid production, insulin resistance and metabolic syndrome. Clinical Endocrinology, 2014, 80, 677-684.	2.4	143
9	Continuum of Renin-Independent Aldosteronism in Normotension. Hypertension, 2017, 69, 950-956.	2.7	122
10	A possible association between primary aldosteronism and a lower β-cell function. Journal of Hypertension, 2007, 25, 2125-2130.	0.5	88
11	Modulating the function of the immune system by thyroid hormones and thyrotropin. Immunology Letters, 2017, 184, 76-83.	2.5	86
12	Epigenetics and arterial hypertension: the challenge of emerging evidence. Translational Research, 2015, 165, 154-165.	5.0	83
13	Increased levels of oxidative stress, subclinical inflammation, and myocardial fibrosis markers in primary aldosteronism patients. Journal of Hypertension, 2010, 28, 2120-2126.	0.5	76
14	Aldosterone Production and Signaling Dysregulation in Obesity. Current Hypertension Reports, 2016, 18, 20.	3.5	66
15	Aldosterone as a modulator of immunity. Journal of Hypertension, 2011, 29, 1684-1692.	0.5	57
16	Overexpression of 11β-Hydroxysteroid Dehydrogenase Type 1 in Hepatic and Visceral Adipose Tissue is Associated with Metabolic Disorders in Morbidly Obese Patients. Obesity Surgery, 2010, 20, 77-83.	2.1	56
17	Frequency of Familial Hyperaldosteronism Type 1 in a Hypertensive Pediatric Population. Hypertension, 2011, 57, 1117-1121.	2.7	55
18	Age-Related Changes in 11Â-Hydroxysteroid Dehydrogenase Type 2 Activity in Normotensive Subjects. American Journal of Hypertension, 2013, 26, 481-487.	2.0	48

#	Article	IF	CITATIONS
19	Beneficial effects of mineralocorticoid receptor blockade in experimental nonâ€alcoholic steatohepatitis. Liver International, 2015, 35, 2129-2138.	3.9	48
20	Serum 18-Hydroxycortisol in Primary Aldosteronism, Hypertension, and Normotensives. Hypertension, 2001, 38, 688-691.	2.7	47
21	Two Homozygous Mutations in the 11β-Hydroxysteroid Dehydrogenase Type 2 Gene in a Case of Apparent Mineralocorticoid Excess. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 2501-2507.	3.6	45
22	Intracellular calcium and blood pressure: Comparison between primary hyperparathyroidism and essential hypertension. Journal of Endocrinological Investigation, 1995, 18, 827-832.	3.3	43
23	Overexpression of 11βâ€hydroxysteroid dehydrogenase type 1 in visceral adipose tissue and portal hypercortisolism in nonâ€alcoholic fatty liver disease. Liver International, 2012, 32, 392-399.	3.9	42
24	Aldosterone, Plasma Renin Activity, and Aldosterone/Renin Ratio in a Normotensive Healthy Pediatric Population. Hypertension, 2010, 56, 391-396.	2.7	41
25	Birth weight is inversely associated with blood pressure and serum aldosterone and cortisol levels in children. Clinical Endocrinology, 2012, 76, 713-718.	2.4	40
26	11β-hydroxysteroid dehydrogenase type-2 and type-1 (11β-HSD2 and 11β-HSD1) and 5β-reductase activities in pathogenia of essential hypertension. Endocrine, 2010, 37, 106-114.	the 2.3	39
27	Biochemical and genetic characterization of 11 ??-hydroxysteroid dehydrogenase type 2 in low-renin essential hypertensives. Journal of Hypertension, 2005, 23, 71-77.	0.5	34
28	Primary aldosteronism can alter peripheral levels of transforming growth factor \hat{I}^2 and tumor necrosis factor \hat{I}_{\pm} . Journal of Endocrinological Investigation, 2009, 32, 759-765.	3.3	34
29	Overexpression of hepatic 5α-reductase and 11β-hydroxysteroid dehydrogenase type 1 in visceral adipose tissue is associated with hyperinsulinemia in morbidly obese patients. Metabolism: Clinical and Experimental, 2011, 60, 1775-1780.	3.4	34
30	Increased urinary glucocorticoid metabolites are associated with metabolic syndrome, hypoadiponectinemia, insulin resistance and β cell dysfunction. Steroids, 2011, 76, 1575-1581.	1.8	33
31	11β-Hydroxysteroid Dehydrogenase Type 1 is Overexpressed in Subcutaneous Adipose Tissue of Morbidly Obese Patients. Obesity Surgery, 2009, 19, 764-770.	2.1	32
32	Genetic Study of Patients with Dexamethasone-Suppressible Aldosteronism without the Chimeric CYP11B1/CYP11B2 Gene. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 4805-4807.	3.6	31
33	LC–MS/MS Method for the Simultaneous Determination of Free Urinary Steroids. Chromatographia, 2014, 77, 637-642.	1.3	29
34	Clinical, Biochemical, and Genetic Characteristics of "Nonclassic―Apparent Mineralocorticoid Excess Syndrome. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 595-603.	3.6	26
35	Classic and Nonclassic Apparent Mineralocorticoid Excess Syndrome. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e924-e936.	3.6	26
36	The impact of the micronutrient iodine in health and diseases. Critical Reviews in Food Science and Nutrition, 2022, 62, 1466-1479.	10.3	26

#	Article	IF	CITATIONS
37	High prevalence of thyroid abnormalities in a Chilean psychiatric outpatient population. Journal of Endocrinological Investigation, 2000, 23, 102-106.	3.3	21
38	Genetics of Hypertensive Syndrome. Hormone Research in Paediatrics, 2009, 71, 253-259.	1.8	21
39	Usefulness and Pitfalls in Sodium Intake Estimation: Comparison of Dietary Assessment and Urinary Excretion in Chilean Children and Adults. American Journal of Hypertension, 2016, 29, 1212-1217.	2.0	20
40	Serum Cortisol and Cortisone as Potential Biomarkers of Partial 11β-Hydroxysteroid Dehydrogenase Type 2 Deficiency. American Journal of Hypertension, 2018, 31, 910-918.	2.0	19
41	A New Presentation of the Chimeric CYP11B1/CYP11B2 Gene With Low Prevalence of Primary Aldosteronism and Atypical Gene Segregation Pattern. Hypertension, 2012, 59, 85-91.	2.7	18
42	Downregulation of exosomal miR-192-5p and miR-204-5p in subjects with nonclassic apparent mineralocorticoid excess. Journal of Translational Medicine, 2019, 17, 392.	4.4	17
43	Eplerenone Implantation Improved Adipose Dysfunction Averting RAAS Activation and Cell Division. Frontiers in Endocrinology, 2020, 11, 223.	3.5	16
44	Different effects of progesterone and estradiol on chimeric and wild type aldosterone synthase in vitro. Reproductive Biology and Endocrinology, 2013, 11, 76.	3.3	14
45	Positive association between aldosteroneâ€renin ratio and carotid intimaâ€media thickness in hypertensive children. Clinical Endocrinology, 2013, 78, 352-357.	2.4	14
46	Cortisol/cortisone ratio and matrix metalloproteinase-9 activity are associated with pediatric primary hypertension. Journal of Hypertension, 2016, 34, 1808-1814.	0.5	14
47	Imprinting of maternal thyroid hormones in the offspring. International Reviews of Immunology, 2017, 36, 240-255.	3.3	14
48	The Expression of RAC1 and Mineralocorticoid Pathway-Dependent Genes are Associated With Different Responses to Salt Intake. American Journal of Hypertension, 2015, 28, 722-728.	2.0	13
49	The Aldosterone/Renin Ratio Predicts Cardiometabolic Disorders in Subjects Without Classic Primary Aldosteronism. American Journal of Hypertension, 2019, 32, 468-475.	2.0	13
50	A de novo unequal cross-over mutation between CYP11B1 and CYP11B2 genes causes familial hyperaldosteronism type I. Journal of Endocrinological Investigation, 2011, 34, 140-144.	3.3	12
51	11Â-Hydroxysteroid Dehydrogenase Type 2 Polymorphisms and Activity in a Chilean Essential Hypertensive and Normotensive Cohort. American Journal of Hypertension, 2012, 25, 597-603.	2.0	12
52	Identification of novel 11β-HSD1 inhibitors by combined ligand- and structure-based virtual screening. Molecular and Cellular Endocrinology, 2014, 384, 71-82.	3.2	12
53	Proteomic Profile of Urinary Extracellular Vesicles Identifies AGP1 as a Potential Biomarker of Primary Aldosteronism. Endocrinology, 2021, 162, .	2.8	12
54	Primary Aldosteronism and its Impact on the Generation of Arterial Hypertension, Endothelial Injury and Oxidative Stress. Journal of Pediatric Endocrinology and Metabolism, 2010, 23, 323-30.	0.9	11

#	Article	IF	CITATIONS
55	Sodium Intake Is associated With Endothelial Damage Biomarkers and Metabolic Dysregulation. American Journal of Hypertension, 2018, 31, 1127-1132.	2.0	11
56	Primary aldosteronism. Clinical Laboratory, 2002, 48, 181-90.	0.5	11
57	Authors' Response: Prevalence of Primary Aldosteronism in Unselected Hypertensive Populations—Screening and Definitive Diagnosis. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 4003-4004.	3.6	10
58	A Polymorphic GT Short Tandem Repeat Affecting β-ENaC mRNA Expression Is Associated With Low Renin Essential Hypertension. American Journal of Hypertension, 2007, 20, 800-806.	2.0	10
59	Plasminogen Activator Inhibitor-1 and Adiponectin Are Associated With Metabolic Syndrome Components. American Journal of Hypertension, 2022, 35, 311-318.	2.0	9
60	Hypertensive Patients That Respond to Aldosterone Antagonists May Have a Nonclassical 11β-HSD2 Deficiency. American Journal of Hypertension, 2017, 30, e6-e6.	2.0	8
61	Refractory depression in a patient with peripheral resistance to thyroid hormone (RTH) and the effect of triiodothyronine treatment. Endocrine, 2007, 31, 272-278.	2.2	7
62	Novel metabolomic profile of subjects with non-classic apparent mineralocorticoid excess. Scientific Reports, 2021, 11, 17156.	3.3	7
63	New splicing mutation of MEN1 gene affecting the translocation of menin to the nucleous. Journal of Endocrinological Investigation, 2006, 29, 888-893.	3.3	6
64	Urinary sodium-to-potassium ratio and plasma renin and aldosterone concentrations in normotensive children: implications for the interpretation of results. Journal of Hypertension, 2020, 38, 671-678.	0.5	5
65	Aldosterone and renin concentrations were abnormally elevated in a cohort of normotensive pregnant women. Endocrine, 2022, 75, 899-906.	2.3	5
66	Association of adrenal medullar and cortical nodular hyperplasia. Endocrine, 2006, 30, 389-396.	2.2	4
67	Hiperaldosteronismo primario. Revista Medica De Chile, 2008, 136, .	0.2	4
68	Citosine-Adenine-Repeat Microsatellite of 11β-hydroxysteroid dehydrogenase 2 Gene in Hypertensive Children. American Journal of Hypertension, 2016, 29, 25-32.	2.0	4
69	Serum Alpha-1-Acid Glycoprotein-1 and Urinary Extracellular Vesicle miR-21-5p as Potential Biomarkers of Primary Aldosteronism. Frontiers in Immunology, 2021, 12, 768734.	4.8	4
70	Cautions over idiopathic aldosteronism. Lancet, The, 2001, 358, 333-334.	13.7	3
71	Primary Hyperaldosteronism in the Hypertensive Disease. Current Hypertension Reviews, 2006, 2, 33-40.	0.9	3
72	Extending the endocrine hypertension spectrum: novel nonclassic apparent mineralocorticoid excess. Endocrine, 2021, 74, 437-439.	2.3	3

#	Article	IF	CITATIONS
73	Primary Aldosteronism, Aldosterone, and Extracellular Vesicles. Endocrinology, 2022, 163, .	2.8	3
74	Clinical, biochemical, and miRNA profile of subjects with positive screening of primary aldosteronism and nonclassic apparent mineralocorticoid excess. Endocrine, 2022, 77, 380-391.	2.3	3
75	Neurobehavioral and psychological changes induced by hyperthyroidism: diagnostic and therapeutic implications. Expert Review of Neurotherapeutics, 2002, 2, 709-716.	2.8	2
76	A possible association between primary aldosteronism and a lower β-cell function. Journal of Hypertension, 2008, 26, 609-610.	0.5	1
77	Depressive symptoms are associated with higher morning plasma cortisol in primary care subjects. Neuroendocrinology Letters, 2018, 39, 288-293.	0.2	1