Francois Mear

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5029073/publications.pdf

Version: 2024-02-01

477173 567144 43 922 15 29 citations h-index g-index papers 43 43 43 880 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Structural relaxation and rejuvenation in a metallic glass induced by shot-peening. Philosophical Magazine Letters, 2009, 89, 831-840.	0.5	98
2	Effects of temperature, reaction time and reducing agent content on the synthesis of macroporous foam glasses from waste funnel glasses. Materials Letters, 2006, 60, 929-934.	1.3	95
3	Mechanical behaviour and thermal and electrical properties of foam glass. Ceramics International, 2007, 33, 543-550.	2.3	79
4	Lead extraction from waste funnel cathode-ray tubes glasses by reaction with silicon carbide and titanium nitride. Journal of Hazardous Materials, 2009, 172, 117-123.	6.5	63
5	Characterisation of porous glasses prepared from Cathode Ray Tube (CRT). Powder Technology, 2006, 162, 59-63.	2.1	61
6	Characterization of lead, barium and strontium leachability from foam glasses elaborated using waste cathode ray-tube glasses. Journal of Hazardous Materials, 2011, 185, 236-241.	6.5	52
7	Immobilization of radioactive iodine in silver aluminophosphate glasses. Journal of Hazardous Materials, 2014, 264, 117-126.	6.5	43
8	Local structure around lead, barium and strontium in waste cathode-ray tube glasses. Journal of Non-Crystalline Solids, 2007, 353, 4640-4646.	1.5	40
9	Residual-stress distribution in shot-peened metallic-glass plate. Philosophical Magazine Letters, 2008, 88, 757-766.	0.5	40
10	Autonomic Selfâ€Repairing Glassy Materials. Advanced Functional Materials, 2010, 20, 4371-4374.	7.8	38
11	Development and characterization of glass-ceramic sealants in the (CaO–Al2O3–SiO2–B2O3) system for Solid Oxide Electrolyzer Cells. Journal of Power Sources, 2012, 216, 227-236.	4.0	26
12	A new formulation of barium–strontium silicate glasses and glass-ceramics for high-temperature sealant. International Journal of Hydrogen Energy, 2012, 37, 11360-11369.	3.8	21
13	New viscous sealing glasses for electrochemical cells. International Journal of Hydrogen Energy, 2012, 37, 9351-9358.	3.8	21
14	Structural effects of shot-peening in bulk metallic glasses. Journal of Alloys and Compounds, 2009, 483, 256-259.	2.8	20
15	Self-Healing Glassy Thin Coating for High-Temperature Applications. ACS Applied Materials & Samp; Interfaces, 2016, 8, 4208-4215.	4.0	19
16	Niobium- and bismuth-silver phosphate glasses for the conditioning of radioactive iodine. Journal of Non-Crystalline Solids, 2019, 510, 51-61.	1.5	16
17	Glass Recycling. Springer Handbooks, 2019, , 1355-1377.	0.3	14
18	Spark Plasma Sintering of Mg-Based Amorphous Ball-Milled Powders. Materials Transactions, 2009, 50, 588-591.	0.4	13

#	Article	IF	Citations
19	Synergic effect of V2O5 and P2O5 on the sealing properties of barium–strontium–alumino-silicate glass/glass–ceramics. International Journal of Hydrogen Energy, 2013, 38, 15542-15552.	3.8	13
20	Characterization of self-healing glassy composites by high-temperature environmental scanning electron microscopy (HT-ESEM). Journal of Electron Microscopy, 2010, 59, 359-366.	0.9	12
21	Structural investigations of rapidly solidified Mg–Cu–Y alloys. Journal of Alloys and Compounds, 2010, 496, 149-154.	2.8	12
22	Influence of the Active Particles on the Selfâ€Healing Efficiency in Glassy Matrix. Advanced Engineering Materials, 2011, 13, 426-435.	1.6	12
23	Highly inhomogeneous compressive plasticity in nanocrystal-toughened Zr–Cu–Ni–Al bulk metallic glass. Philosophical Magazine Letters, 2009, 89, 276-281.	0.5	11
24	French Studies on the Development of Potential Conditioning Matrices for Iodine 129. Materials Research Society Symposia Proceedings, 2015, 1744, 15-20.	0.1	11
25	Further insights on the thermal degradation of aluminum metaphosphate prepared from aluminum dihydrogen phosphate solution. Journal of the European Ceramic Society, 2021, 41, 4970-4976.	2.8	11
26	Role of vanadium oxide on the lithium silicate glass structure and properties. Journal of the American Ceramic Society, 2021, 104, 2495-2505.	1.9	10
27	2D―and 3D Observation and Mechanism of Selfâ€Healing in Glass–Boron Composites. Journal of the American Ceramic Society, 2016, 99, 849-855.	1.9	8
28	Molybdenum Influence on the Mixed-Alkali Effect of Lithium–Sodium Phosphate Glasses. Journal of Physical Chemistry C, 2018, 122, 15886-15891.	1.5	8
29	Aluminosilicate glass thin films elaborated by pulsed laser deposition. Applied Surface Science, 2017, 397, 13-18.	3.1	7
30	Chemical durability evaluation of silver phosphate–based glasses designed for the conditioning of radioactive iodine. Journal of Nuclear Materials, 2021, 550, 152919.	1.3	7
31	Influence of AlN, TiN and SiC reduction on the structural environment of lead in waste cathode-ray tubes glass: an x-ray absorption spectroscopy study. Journal of Physics Condensed Matter, 2009, 21, 285104.	0.7	6
32	Bismuth silver phosphate glasses as alternative matrices for the conditioning of radioactive iodine. Journal of Commonwealth Law and Legal Education, 2015, 56, 71-75.	0.2	6
33	Crystallization mechanism of BaO-CaO-Al2O3-SiO2 (BCAS) glass thin-films. Journal of Non-Crystalline Solids, 2021, 551, 120406.	1.5	6
34	71 Ga-77 Se connectivities and proximities in gallium selenide crystal and glass probed by solid-state NMR. Journal of Magnetic Resonance, 2017, 282, 71-82.	1.2	5
35	Structural characterization of a Cu(II) thin-film aging in a Cu-nitrate solution. Applied Surface Science, 2009, 255, 6607-6611.	3.1	4
36	Structure â€" Properties study of Na2Oâ€"CaOâ€"PbOâ€"P2O5 metaphosphate glasses. Solid State Sciences, 2021, 118, 106666.	1.5	4

#	Article	IF	CITATIONS
37	Development and characterisation of glass and glass ceramic sealants for solid oxide electrolyser cells. Ionics, 2012, 18, 441-447.	1.2	3
38	Effect of the process atmosphere on glass foam synthesis: A high-temperature environmental scanning electron microscopy (HT-ESEM) study. Ceramics International, 2021, 47, 26042-26049.	2.3	3
39	Characterization and Performance of Glass-Ceramic Sealants for SOECs. Advances in Science and Technology, 0, , .	0.2	2
40	$\label{eq:matching} \begin{tabular}{l} Mat\Tilde{A}@riaux vitreux autocicatrisants pour application \tilde{A} haute temp$@rature. Materiaux Et Techniques, 2010, 98, 403-407. \end{tabular}$	0.3	1
41	Glass Reactivity at High Temperature. Microscopy and Microanalysis, 2021, 27, 49-50.	0.2	1
42	Influence of V2O5 on a sealing glass and self-healing VB2-glass composites. Solid State Sciences, 2021, 119, 106706.	1.5	0
43	Matériaux vitreux auto-cicatrisants pour application à haute température, élaborés sous forme de couches minces. Materiaux Et Techniques, 2015, 103, 406.	0.3	0