Wei Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5028615/publications.pdf

Version: 2024-02-01

	201674	223800
2,166	27	46
citations	h-index	g-index
		1.660
59	59	1660
docs citations	times ranked	citing authors
	citations 59	2,166 27 citations h-index 59 59

#	Article	IF	CITATIONS
1	Lignin doped epoxy acrylate sandwich electromagnetic shielding material synergized with Fe ₃ O ₄ and CNT. Journal of Dispersion Science and Technology, 2022, 43, 2209-2217.	2.4	1
2	Singleâ€ion Gel Polymer Electrolyte Based on Poly(ether sulfone) for Highâ€Performance Lithiumâ€ion Batteries. Macromolecular Materials and Engineering, 2022, 307, .	3.6	3
3	Porous Cationic Electrospun Fibers with Sufficient Adsorption Sites for Effective and Continuous ⁹⁹ TcO ₄ ^{â^²} Uptake. Advanced Functional Materials, 2022, 32, .	14.9	34
4	Construction of highly conductive PBI-based alloy membranes by incorporating PIMs with optimized molecular weights for high-temperature proton exchange membrane fuel cells. Journal of Membrane Science, 2022, 659, 120790.	8.2	19
5	Fabrication of PBI/SPOSS hybrid high-temperature proton exchange membranes using SPAEK as compatibilizer. Journal of Membrane Science, 2021, 620, 118855.	8.2	42
6	Lignin Based Flexible Electromagnetic Shielding PU Synergized with Graphite. Fibers and Polymers, 2021, 22, 1-8.	2.1	19
7	Sulfophenylated Poly (Ether Ether Ketone Ketone) Nanofiber Composite Separator with Excellent Electrochemical Performance and Dimensional Thermal Stability for Lithiumâ€ion Battery via Electrospinning. Macromolecular Materials and Engineering, 2021, 306, 2100118.	3.6	5
8	Synergism between lignin, functionalized carbon nanotubes and Fe3O4 nanoparticles for electromagnetic shielding effectiveness of tough lignin-based polyurethane. Composites Communications, 2021, 24, 100616.	6.3	22
9	The Enhanced Performance of Polyethylene Composite Separators by the Modification of Lithium Salt@SiO ₂ Nanoparticles. Macromolecular Materials and Engineering, 2021, 306, 2100257.	3.6	2
10	High performance of polyethylene composite separators modified by carbon nanotube, lithium salt and SiO2 nanoparticles for lithium ion batteries. Composites Communications, 2021, 28, 100976.	6.3	9
11	Bio-inspired adhesive and self-healing hydrogels as flexible strain sensors for monitoring human activities. Materials Science and Engineering C, 2020, 106, 110168.	7.3	45
12	Poly(arylene ether sulfone) crosslinked networks with pillar[5]arene units grafted by multiple long-chain quaternary ammonium salts for anion exchange membranes. Chemical Communications, 2020, 56, 928-931.	4.1	24
13	Highly Conductive and Mechanically Stable Imidazole-Rich Cross-Linked Networks for High-Temperature Proton Exchange Membrane Fuel Cells. Chemistry of Materials, 2020, 32, 1182-1191.	6.7	131
14	Electrolyte Membranes with Biomimetic Lithium-Ion Channels. Nano Letters, 2020, 20, 5435-5442.	9.1	49
15	Fabrication of Crossâ€Linked Anion Exchange Membranes Using a Pillar[5]arene Bearing Multiple Alkyl Bromide Head Groups as Crossâ€Linker. Macromolecular Materials and Engineering, 2020, 305, 2000158.	3.6	9
16	A novel phosphorus-containing lignin-based flame retardant and its application in polyurethane. Composites Communications, 2020, 21, 100382.	6.3	39
17	Novel Nanocomposite PEM Membranes with Continuous Proton Transportation Channel and Reinforcing Network Formed by Electrospinning Solution Casting Method. Macromolecular Materials and Engineering, 2020, 305, 1900388.	3.6	6
18	Improved Mechanical Properties and Flame Retardancy of Wood/PLA Allâ€Degradable Biocomposites with Novel Ligninâ€Based Flame Retardant and TGIC. Macromolecular Materials and Engineering, 2020, 305, 1900840.	3.6	43

#	Article	IF	Citations
19	Mechanical, adhesive and self-healing ionic liquid hydrogels for electrolytes and flexible strain sensors. Journal of Materials Chemistry C, 2020, 8, 11119-11127.	5 . 5	57
20	Highly conductive and stable anionâ€exchange membranes based on crosslinked poly(arylene ether) Tj ETQq0 0	0 rggT /O	verlock 10 Tf
21	Construction of High-Performance, High-Temperature Proton Exchange Membranes through Incorporating SiO ₂ Nanoparticles into Novel Cross-linked Polybenzimidazole Networks. ACS Applied Materials & Diterfaces, 2019, 11, 30735-30746.	8.0	89
22	Property improvement of nanocelluloseâ€reinforced proton exchange nanocomposite membrane coated with tetraethyl orthosilicate. Journal of Polymer Science Part A, 2019, 57, 2190-2200.	2.3	1
23	Proton Conductivity Improvement Effect of Cellulose on SPEEKK Based PEM. Chemical Research in Chinese Universities, 2019, 35, 916-923.	2.6	1
24	Ozone oxidized lignin-based polyurethane with improved properties. European Polymer Journal, 2019, 117, 114-122.	5 . 4	37
25	Toward enhanced conductivity of high-temperature proton exchange membranes: development of novel PIM-1 reinforced PBI alloy membranes. Chemical Communications, 2019, 55, 6491-6494.	4.1	62
26	Carboxyl-functionalized Nanocellulose Reinforced Nanocomposite Proton Exchange Membrane. Chemical Research in Chinese Universities, 2019, 35, 735-741.	2.6	1
27	Effect of aminated nanocrystal cellulose on proton conductivity and dimensional stability of proton exchange membranes. Applied Surface Science, 2019, 466, 691-702.	6.1	46
28	Performance of UV curable lignin based epoxy acrylate coatings. Progress in Organic Coatings, 2018, 116, 83-89.	3.9	44
29	Novel proton exchange membranes based on structure-optimized poly(ether ether ketone ketone)s and nanocrystalline cellulose. Applied Surface Science, 2018, 434, 163-175.	6.1	52
30	Synthesis of a lignin-based phosphorus-containing flame retardant and its application in polyurethane. RSC Advances, 2018, 8, 32252-32261.	3.6	50
31	Crosslinking effect in nanocrystalline cellulose reinforced sulfonated poly(aryl ether ketone) proton exchange membranes. Solid State Ionics, 2018, 323, 5-15.	2.7	37
32	Arylether-type polybenzimidazoles bearing benzimidazolyl pendants for high-temperature proton exchange membrane fuel cells. Journal of Power Sources, 2018, 393, 99-107.	7.8	73
33	Improved performance of dual-cured organosolv lignin-based epoxy acrylate coatings. Composites Communications, 2018, 10, 52-56.	6.3	24
34	Modified nanocrystal cellulose/fluorene-containing sulfonated poly(ether ether ketone ketone) composites for proton exchange membranes. Applied Surface Science, 2017, 416, 996-1006.	6.1	47
35	Novel iodo-containing poly(arylene ether ketone)s as intermediates for grafting perfluoroalkyl sulfonic acid groups. Reactive and Functional Polymers, 2017, 111, 7-13.	4.1	11

Proton conducting nanocomposite membranes of nanocellulose reinforced poly(arylene ether) Tj ETQq0 0 0 rgBT $\frac{10}{27}$ Tf 50 62

36

#	Article	IF	CITATIONS
37	Fuel cell performance of pendent methylphenyl sulfonated poly(ether ether ketone ketone)s. Journal of Power Sources, 2017, 368, 30-37.	7.8	26
38	In situ inorganic flame retardant modified hemp and its polypropylene composites. RSC Advances, 2017, 7, 32236-32245.	3.6	19
39	Moisture absorption and mechanical properties of chemically modified linen/polypropylene composites. Chemical Research in Chinese Universities, 2017, 33, 1000-1006.	2.6	O
40	Chemical modifications on linen for unsaturated polyester composites. Chemical Research in Chinese Universities, 2016, 32, 1057-1062.	2.6	3
41	Nanocystalline cellulose reinforced sulfonated fluorenyl-containing polyaryletherketones for proton exchange membranes. Solid State Ionics, 2016, 297, 29-35.	2.7	34
42	Sulfonated nanocrystal cellulose/sulfophenylated poly(ether ether ketone ketone) composites for proton exchange membranes. RSC Advances, 2016, 6, 65072-65080.	3.6	28
43	Dimensionally-stable phosphoric acid–doped polybenzimidazoles for high-temperature proton exchange membrane fuel cells. Journal of Power Sources, 2016, 336, 391-400.	7.8	71
44	Synthesis and characterization of poly(i‰-pentadecalactone) for its industrial-scale production. Chemical Research in Chinese Universities, 2015, 31, 640-644.	2.6	3
45	Study on refined triticale straw reinforced PP composites. Chemical Research in Chinese Universities, 2015, 31, 873-877.	2.6	1
46	A comparison of flax shive and extracted flax shive reinforced PP composites. Fibers and Polymers, 2014, 15, 1722-1728.	2.1	11
47	Poly(arylene ether) electrolyte membranes bearing aliphatic-chain-linked sulfophenyl pendant groups. Journal of Membrane Science, 2013, 428, 629-638.	8.2	20
48	Characterization of polypropylene composites reinforced with flax fibers treated by mechanical and alkali methods. Science and Engineering of Composite Materials, 2011, 18, 79-85.	1.4	6
49	Sulphonated Biphenylated Poly(aryl ether ketone)s for Fuel Cell Applications. Fuel Cells, 2010, 10, 45-53.	2.4	2
50	Preparation and DMFC performance of a sulfophenylated poly(arylene ether ketone) polymer electrolyte membrane. Electrochimica Acta, 2010, 55, 3817-3823.	5.2	22
51	Homopolymer-like sulfonated phenyl- and diphenyl-poly(arylene ether ketone)s for fuel cell applications. Journal of Power Sources, 2008, 185, 899-903.	7.8	35
52	Poly(aryl ether ketone)s with carboxylic acid groups: synthesis, sulfonation and crosslinking. Journal of Materials Chemistry, 2008, 18, 4675.	6.7	73
53	Aromatic Poly(ether ketone)s with Pendant Sulfonic Acid Phenyl Groups Prepared by a Mild Sulfonation Method for Proton Exchange Membranesâ€. Macromolecules, 2007, 40, 1934-1944.	4.8	348

A comparative structure–property study of methylphenylated and fluoromethylphenylated poly(aryl) Tj ETQq0 0 9 rgBT /Overlock 10 7 28

Wei Hu

#	Article	IF	CITATION
55	Physical aging behavior of 6F-PEEK andm-TPEEK studied by modulated differential scanning calorimetry. Journal of Applied Polymer Science, 2005, 96, 312-317.	2.6	3
56	Synthesis and characterization of organosoluble ditrifluoromethylated aromatic polyimides. Journal of Polymer Science Part A, 2005, 43, 3018-3029.	2.3	46
57	Soluble aromatic poly(ether ketone)s with a pendant 3,5-ditrifluoromethylphenyl group. Polymer, 2004, 45, 3241-3247.	3.8	105
58	Methylated and Trifluoromethylated Poly(aryl ethers). Polymer Journal, 2003, 35, 628-633.	2.7	6
59	Poly(aryl ether ketone)s with (3-methyl)phenyl and (3-trifluoromethyl)phenyl side groups. Journal of Polymer Science Part A, 2002, 40, 3392-3398.	2.3	106