Feng Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5028398/publications.pdf Version: 2024-02-01

FENC MANC

#	Article	lF	CITATIONS
1	A Highly Efficient Photocatalytic System for Hydrogen Production by a Robust Hydrogenase Mimic in an Aqueous Solution. Angewandte Chemie - International Edition, 2011, 50, 3193-3197.	13.8	315
2	Artificial Photosynthetic Systems Based on [FeFe]-Hydrogenase Mimics: the Road to High Efficiency for Light-Driven Hydrogen Evolution. ACS Catalysis, 2012, 2, 407-416.	11.2	175
3	Chitosan confinement enhances hydrogen photogeneration from a mimic of the diiron subsite of [FeFe]-hydrogenase. Nature Communications, 2013, 4, 2695.	12.8	159
4	Photocatalytic Hydrogen Production from Water by Noble-Metal-Free Molecular Catalyst Systems Containing Rose Bengal and the Cobaloximes of BF _{<i>x</i>} -Bridged Oxime Ligands. Journal of Physical Chemistry C, 2010, 114, 15868-15874.	3.1	151
5	Exceptional Poly(acrylic acid)â€Based Artificial [FeFe]â€Hydrogenases for Photocatalytic H ₂ Production in Water. Angewandte Chemie - International Edition, 2013, 52, 8134-8138.	13.8	145
6	Hollow Nitrogen-Doped Carbon Spheres with Fe ₃ O ₄ Nanoparticles Encapsulated as a Highly Active Oxygen-Reduction Catalyst. ACS Applied Materials & Interfaces, 2017, 9, 10610-10617.	8.0	128
7	Photocatalytic Hydrogen Evolution from Rhenium(I) Complexes to [FeFe] Hydrogenase Mimics in Aqueous SDS Micellar Systems: A Biomimetic Pathway. Langmuir, 2010, 26, 9766-9771.	3.5	124
8	Interface-directed assembly of a simple precursor of [FeFe]–H2ase mimics on CdSe QDs for photosynthetic hydrogen evolution in water. Energy and Environmental Science, 2013, 6, 2597.	30.8	115
9	Highly luminescent palladium(<scp>ii</scp>) complexes with sub-millisecond blue to green phosphorescent excited states. Photocatalysis and highly efficient PSF-OLEDs. Chemical Science, 2016, 7, 6083-6098.	7.4	112
10	A facile modular approach to the 2D oriented assembly MOF electrode for non-enzymatic sweat biosensors. Nanoscale, 2018, 10, 6629-6638.	5.6	73
11	Photocatalytic Hydrogen Evolution by [FeFe] Hydrogenase Mimics in Homogeneous Solution. Chemistry - an Asian Journal, 2010, 5, 1796-1803.	3.3	72
12	Artificial Photosynthetic Systems for CO ₂ Reduction: Progress on Higher Efficiency with Cobalt Complexes as Catalysts. ChemSusChem, 2017, 10, 4393-4402.	6.8	70
13	Photocatalytic hydrogen production from a simple water-soluble [FeFe]-hydrogenase model system. Chemical Communications, 2012, 48, 8081.	4.1	68
14	The effects of chelating N ₄ ligand coordination on Co(<scp>ii</scp>)-catalysed photochemical conversion of CO ₂ to CO: reaction mechanism and DFT calculations. Catalysis Science and Technology, 2016, 6, 7408-7420.	4.1	59
15	Electron transfer and hydrogen generation from a molecular dyad: platinum(ii) alkynyl complex anchored to [FeFe] hydrogenase subsite mimic. Dalton Transactions, 2012, 41, 2420.	3.3	55
16	Branched Polyethylenimine Improves Hydrogen Photoproduction from a CdSe Quantum Dot/[FeFe]â€Hydrogenase Mimic System in Neutral Aqueous Solutions. Chemistry - A European Journal, 2015, 21, 3187-3192.	3.3	55
17	A triad [FeFe] hydrogenase system for light-driven hydrogen evolution. Chemical Communications, 2011, 47, 8406.	4.1	50
18	Amphiphilic polymeric micelles as microreactors: improving the photocatalytic hydrogen production of the [FeFe]-hydrogenase mimic in water. Chemical Communications, 2016, 52, 457-460.	4.1	49

Feng Wang

#	Article	IF	CITATIONS
19	Highly Efficient Photocatalytic Conversion of CO ₂ to CO Catalyzed by Surfaceâ€Ligandâ€Removed and Cdâ€Rich CdSe Quantum Dots. ChemSusChem, 2019, 12, 4617-4622.	6.8	48
20	Graphene paper supported MoS2 nanocrystals monolayer with Cu submicron-buds: High-performance flexible platform for sensing in sweat. Analytical Biochemistry, 2018, 543, 82-89.	2.4	46
21	Facile formation of CoN ₄ active sites onto a SiO ₂ support to achieve robust CO ₂ and proton reduction in a noble-metal-free photocatalytic system. Journal of Materials Chemistry A, 2019, 7, 10475-10482.	10.3	42
22	Multistimuli Responsive Micelles Formed by a Tetrathiafulvalene-Functionalized Amphiphile. Langmuir, 2011, 27, 8665-8671.	3.5	32
23	Photocatalytic reduction of CO ₂ to CO and formate by a novel Co(<scp>ii</scp>) catalyst containing a <i>cis</i> -oxygen atom: photocatalysis and DFT calculations. Dalton Transactions, 2018, 47, 13142-13150.	3.3	32
24	Effective and reversible DNA condensation induced by bifunctional molecules containing macrocyclic polyamines and naphthyl moieties. Bioorganic and Medicinal Chemistry, 2012, 20, 801-808.	3.0	25
25	A macromolecular cyclometalated gold(<scp>iii</scp>) amphiphile displays long-lived emissive excited state in water: self-assembly and in vitro photo-toxicity. Chemical Communications, 2016, 52, 13273-13276.	4.1	22
26	A biomimetic self-assembled cobaloxime@CdS/rGO hybrid for boosting photocatalytic H ₂ production. Chemical Communications, 2019, 55, 14490-14493.	4.1	21
27	Hybrid artificial photosynthetic systems constructed using quantum dots and molecular catalysts for solar fuel production: development and advances. Journal of Materials Chemistry A, 2021, 9, 19346-19368.	10.3	19
28	Assembling CdSe Quantum Dots into Polymeric Micelles Formed by a Polyethylenimine-Based Amphiphilic Polymer to Enhance Efficiency and Selectivity of CO ₂ -to-CO Photoreduction in Water. ACS Applied Materials & Interfaces, 2022, 14, 29945-29955.	8.0	14
29	Non-synergistic photocatalysis of CO2-to-CO conversion by a binuclear complex of rigidly linking two cobalt catalytic centers. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 426, 113754.	3.9	12
30	Cis-[Coll(MPCA)X2] (X = Cl or Br) complexes as catalyst exhibiting different activity for visible light induced photocatalytic CO2-to-CO conversion. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 355, 175-179.	3.9	11
31	Carbon-Based Nanostructures Vertically Arrayed on Layered Lanthanum Oxycarbonate as Highly Efficient Catalysts for Oxygen Reduction Reactions. ACS Applied Materials & Interfaces, 2019, 11, 16452-16460.	8.0	11
32	Artificial photosynthetic assemblies constructed by the self-assembly of synthetic building blocks for enhanced photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2020, 8, 21690-21699.	10.3	11
33	Microstructure Engineering of Fe/Fe ₃ C-Decorated Metal–Nitrogen–Carbon Mesoporous Nanospheres via a Self-Template Method for Enhancing Oxygen Reduction Activity. ACS Applied Materials & Interfaces, 2020, 12, 28065-28074.	8.0	10
34	Advances on Photocatalytic CO ₂ Reduction Based on CdS and CdSe Nano-Semiconductors. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2020, .	4.9	9
35	Light-driven hydrogen evolution system with glutamic-acid-modified zinc porphyrin as photosensitizer and [FeFe]-hydrogenase model as catalyst. Pure and Applied Chemistry, 2013, 85, 1405-1413.	1.9	7
36	Host-guest assemblies of anchoring molecular catalysts of CO2 reduction onto CuInS2/ZnS quantum dots for robust photocatalytic syngas production in water. Molecular Catalysis, 2022, 520, 112168.	2.0	6

Feng Wang

#	Article	IF	CITATIONS
37	A supported-catalyst of grafting [Co(TPA)Cl]Cl molecular catalyst onto SiO2 nanoparticles to achieve robust syngas production in a photochemical system. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 401, 112742.	3.9	4
38	Bis-terpyridine Os(â¡) Complex Sensitized [FeFe] Hydrogenase Mimic Systems: Synthesis and Photophysical Study. Acta Chimica Sinica, 2012, 70, 2306.	1.4	3
39	Facile passivation of yellow light-emitting CdSe QDs by polyethyleneimine in water to achieve bright white light emission. Materials Advances, 2021, 2, 7384-7388.	5.4	3