Steven A Goldman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5028179/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Paravascular Pathway Facilitates CSF Flow Through the Brain Parenchyma and the Clearance of Interstitial Solutes, Including Amyloid \hat{I}^2 . Science Translational Medicine, 2012, 4, 147ra111.	5.8	3,514
2	New roles for astrocytes: Redefining the functional architecture of the brain. Trends in Neurosciences, 2003, 26, 523-530.	4.2	1,135
3	Uniquely Hominid Features of Adult Human Astrocytes. Journal of Neuroscience, 2009, 29, 3276-3287.	1.7	1,112
4	Reactive astrocyte nomenclature, definitions, and future directions. Nature Neuroscience, 2021, 24, 312-325.	7.1	1,098
5	Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nature Neuroscience, 1998, 1, 683-692.	7.1	773
6	Functional engraftment of human ES cell–derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes. Nature Medicine, 2006, 12, 1259-1268.	15.2	771
7	Coordinated Interaction of Neurogenesis and Angiogenesis in the Adult Songbird Brain. Neuron, 2002, 34, 945-960.	3.8	701
8	Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Nature Medicine, 2003, 9, 439-447.	15.2	675
9	Astrocytic complexity distinguishes the human brain. Trends in Neurosciences, 2006, 29, 547-553.	4.2	590
10	In vitro neurogenesis by progenitor cells isolated from the adult human hippocampus. Nature Medicine, 2000, 6, 271-277.	15.2	539
11	Forebrain Engraftment by Human Glial Progenitor Cells Enhances Synaptic Plasticity and Learning in Adult Mice. Cell Stem Cell, 2013, 12, 342-353.	5.2	517
12	Human iPSC-Derived Oligodendrocyte Progenitor Cells Can Myelinate and Rescue a Mouse Model of Congenital Hypomyelination. Cell Stem Cell, 2013, 12, 252-264.	5.2	500
13	Adenoviral Brain-Derived Neurotrophic Factor Induces Both Neostriatal and Olfactory Neuronal Recruitment from Endogenous Progenitor Cells in the Adult Forebrain. Journal of Neuroscience, 2001, 21, 6718-6731.	1.7	484
14	Heterogeneity of Astrocytic Form and Function. Methods in Molecular Biology, 2012, 814, 23-45.	0.4	480
15	P2X7 receptor inhibition improves recovery after spinal cord injury. Nature Medicine, 2004, 10, 821-827.	15.2	454
16	Gap-junction-mediated propagation and amplification of cell injury. Nature Neuroscience, 1998, 1, 494-500.	7.1	445
17	Zika Virus NS4A and NS4B Proteins Deregulate Akt-mTOR Signaling in Human Fetal Neural Stem Cells to Inhibit Neurogenesis and Induce Autophagy. Cell Stem Cell, 2016, 19, 663-671.	5.2	437
18	Glymphatic failure as a final common pathway to dementia. Science, 2020, 370, 50-56.	6.0	435

#	Article	IF	CITATIONS
19	The Transcriptome and Metabolic Gene Signature of Protoplasmic Astrocytes in the Adult Murine Cortex. Journal of Neuroscience, 2007, 27, 12255-12266.	1.7	420
20	Fetal and adult human oligodendrocyte progenitor cell isolates myelinate the congenitally dysmyelinated brain. Nature Medicine, 2004, 10, 93-97.	15.2	414
21	Endothelial Trophic Support of Neuronal Production and Recruitment from the Adult Mammalian Subependyma. Molecular and Cellular Neurosciences, 1999, 13, 450-464.	1.0	375
22	Systemic administration of an antagonist of the ATP-sensitive receptor P2X7 improves recovery after spinal cord injury. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12489-12493.	3.3	375
23	Purinergic receptor P2RY12-dependent microglial closure of the injured blood–brain barrier. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1074-1079.	3.3	306
24	Nestin-EGFP Transgenic Mice: Visualization of the Self-Renewal and Multipotency of CNS Stem Cells. Molecular and Cellular Neurosciences, 2001, 17, 259-273.	1.0	298
25	Nitric oxide negatively regulates mammalian adult neurogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9566-9571.	3.3	295
26	Neonatal Chimerization with Human Glial Progenitor Cells Can Both Remyelinate and Rescue the Otherwise Lethally Hypomyelinated Shiverer Mouse. Cell Stem Cell, 2008, 2, 553-565.	5.2	293
27	Glioma Stem Cell Proliferation and Tumor Growth Are Promoted by Nitric Oxide Synthase-2. Cell, 2011, 146, 53-66.	13.5	280
28	SOX9 Is an Astrocyte-Specific Nuclear Marker in the Adult Brain Outside the Neurogenic Regions. Journal of Neuroscience, 2017, 37, 4493-4507.	1.7	263
29	Fibroblast growth factor-2/brain-derived neurotrophic factor?associated maturation of new neurons generated from adult human subependymal cells. Annals of Neurology, 1998, 43, 576-585.	2.8	259
30	Use of differentiated pluripotent stem cells in replacement therapy for treating disease. Science, 2014, 345, 1247391.	6.0	243
31	Identification, Isolation, and Promoter-Defined Separation of Mitotic Oligodendrocyte Progenitor Cells from the Adult Human Subcortical White Matter. Journal of Neuroscience, 1999, 19, 9986-9995.	1.7	239
32	Connexin 43 Enhances the Adhesivity and Mediates the Invasion of Malignant Glioma Cells. Journal of Neuroscience, 2002, 22, 4302-4311.	1.7	212
33	Non-Stem Cell Origin for Oligodendroglioma. Cancer Cell, 2010, 18, 669-682.	7.7	211
34	Hu protein as an early marker of neuronal phenotypic differentiation by subependymal zone cells of the adult songbird forebrain. Journal of Neurobiology, 1995, 28, 82-101.	3.7	207
35	Human iPSC Glial Mouse Chimeras Reveal Glial Contributions to Schizophrenia. Cell Stem Cell, 2017, 21, 195-208.e6.	5.2	204
36	Generation of Dopaminergic Neurons in the Adult Brain from Mesencephalic Precursor Cells Labeled with a <i>nestin-GFP</i> Transgene. Journal of Neuroscience, 2001, 21, 3895-3903.	1.7	188

#	Article	IF	CITATIONS
37	How to make an oligodendrocyte. Development (Cambridge), 2015, 142, 3983-3995.	1.2	188
38	Adrenoceptors in brain: Cellular gene expression and effects on astrocytic metabolism and [Ca2+]i. Neurochemistry International, 2010, 57, 411-420.	1.9	186
39	CD140a identifies a population of highly myelinogenic, migration-competent and efficiently engrafting human oligodendrocyte progenitor cells. Nature Biotechnology, 2011, 29, 934-941.	9.4	185
40	Stem and Progenitor Cell-Based Therapy of the Central Nervous System: Hopes, Hype, and Wishful Thinking. Cell Stem Cell, 2016, 18, 174-188.	5.2	184
41	A Distinct Population of Microglia Supports Adult Neurogenesis in the Subventricular Zone. Journal of Neuroscience, 2015, 35, 11848-11861.	1.7	179
42	Gap junctions are required for the propagation of spreading depression. Journal of Neurobiology, 1995, 28, 433-444.	3.7	174
43	High-yield selection and extraction of two promoter-defined phenotypes of neural stem cells from the fetal human brain. Nature Biotechnology, 2001, 19, 843-850.	9.4	171
44	Glia Disease and Repair—Remyelination. Cold Spring Harbor Perspectives in Biology, 2015, 7, a020594.	2.3	171
45	Promoter-targeted selection and isolation of neural progenitor cells from the adult human ventricular zone. , 2000, 59, 321-331.		168
46	Progenitor cells derived from the adult human subcortical white matter disperse and differentiate as oligodendrocytes within demyelinated lesions of the rat brain. Journal of Neuroscience Research, 2002, 69, 966-975.	1.3	165
47	Glial Progenitor Cell–Based Treatment and Modeling of Neurological Disease. Science, 2012, 338, 491-495.	6.0	163
48	Adenovirally Expressed Noggin and Brain-Derived Neurotrophic Factor Cooperate to Induce New Medium Spiny Neurons from Resident Progenitor Cells in the Adult Striatal Ventricular Zone. Journal of Neuroscience, 2004, 24, 2133-2142.	1.7	159
49	Purinergic signaling regulates neural progenitor cell expansion and neurogenesis. Developmental Biology, 2007, 302, 356-366.	0.9	158
50	Unravelling and Exploiting Astrocyte Dysfunction in Huntington's Disease. Trends in Neurosciences, 2017, 40, 422-437.	4.2	155
51	The Effects of Extracellular Acidosis on Neurons and Glia in vitro. Journal of Cerebral Blood Flow and Metabolism, 1989, 9, 471-477.	2.4	151
52	Implications of the discovery of brain lymphatic pathways. Lancet Neurology, The, 2015, 14, 977-979.	4.9	149
53	Human glia can both induce and rescue aspects of disease phenotype in Huntington disease. Nature Communications, 2016, 7, 11758.	5.8	148
54	Glial cells in schizophrenia: a unified hypothesis. Lancet Psychiatry,the, 2020, 7, 272-281.	3.7	145

#	Article	IF	CITATIONS
55	Angiogenic inhibition reduces germinal matrix hemorrhage. Nature Medicine, 2007, 13, 477-485.	15.2	142
56	Adult neurogenesis: From canaries to the clinic. , 1998, 36, 267-286.		139
57	Cell-based therapeutic strategies for multiple sclerosis. Brain, 2017, 140, 2776-2796.	3.7	139
58	Complementary patterns of gene expression by human oligodendrocyte progenitors and their environment predict determinants of progenitor maintenance and differentiation. Annals of Neurology, 2006, 59, 763-779.	2.8	136
59	Perivascular instruction of cell genesis and fate in the adult brain. Nature Neuroscience, 2011, 14, 1382-1389.	7.1	136
60	Telomerase immortalization of neuronally restricted progenitor cells derived from the human fetal spinal cord. Nature Biotechnology, 2004, 22, 297-305.	9.4	133
61	Strategies utilized by migrating neurons of the postnatal vertebrate forebrain. Trends in Neurosciences, 1998, 21, 107-113.	4.2	122
62	Induction of neostriatal neurogenesis slows disease progression in a transgenic murine model of Huntington disease. Journal of Clinical Investigation, 2007, 117, 2889-2902.	3.9	119
63	Estrogens and non-estrogenic ovarian influences combine to promote the recruitment and decrease the turnover of new neurons in the adult female canary brain. Journal of Neurobiology, 1995, 27, 470-487.	3.7	116
64	A Competitive Advantage by Neonatally Engrafted Human Glial Progenitors Yields Mice Whose Brains Are Chimeric for Human Glia. Journal of Neuroscience, 2014, 34, 16153-16161.	1.7	115
65	Dual regulatory switch through interactions of Tcf7l2/Tcf4 with stage-specific partners propels oligodendroglial maturation. Nature Communications, 2016, 7, 10883.	5.8	114
66	Defective Glial Maturation in Vanishing White Matter Disease. Journal of Neuropathology and Experimental Neurology, 2011, 70, 69-82.	0.9	111
67	N-Cadherin and Ng-CAM/8D9 are involved serially in the migration of newly generated neurons into the adult songbird brain. Neuron, 1994, 13, 567-582.	3.8	100
68	Conservation and divergence of vulnerability and responses to stressors between human and mouse astrocytes. Nature Communications, 2021, 12, 3958.	5.8	94
69	Hdac3 Interaction with p300 Histone Acetyltransferase Regulates the Oligodendrocyte and Astrocyte Lineage Fate Switch. Developmental Cell, 2016, 36, 316-330.	3.1	90
70	ETHICS: Moral Issues of Human-Non-Human Primate Neural Grafting. Science, 2005, 309, 385-386.	6.0	89
71	3K3A–activated protein C stimulates postischemic neuronal repair by human neural stem cells in mice. Nature Medicine, 2016, 22, 1050-1055.	15.2	88
72	Neural Stem and Progenitor Cells: A Strategy for Gene Therapy and Brain Repair. Neurosurgery, 1998, 42, 858-867.	0.6	82

#	Article	IF	CITATIONS
73	Neuronal precursors of the adult rat subependymal zone persist into senescence, with no decline in spatial extent or response to BDNF. Journal of Neurobiology, 1997, 32, 554-566.	3.7	78
74	lsolation of neuronal precursors by sorting embryonic forebrain transfected with GFP regulated by the Tα1 tubulin promoter. Nature Biotechnology, 1998, 16, 196-201.	9.4	75
75	Human ESC-Derived Chimeric Mouse Models of Huntington's Disease Reveal Cell-Intrinsic Defects in Glial Progenitor Cell Differentiation. Cell Stem Cell, 2019, 24, 107-122.e7.	5.2	75
76	Identification and characterization of neuronal precursors and their progeny from human fetal tissue. Journal of Neuroscience Research, 2001, 66, 356-368.	1.3	73
77	Whole Genome Analysis of Human Neural Stem Cells Derived from Embryonic Stem Cells and Stem and Progenitor Cells Isolated from Fetal Tissue. Stem Cells, 2007, 25, 1298-1306.	1.4	69
78	Human glial chimeric mice reveal astrocytic dependence of JC virus infection. Journal of Clinical Investigation, 2014, 124, 5323-5336.	3.9	68
79	Cell replacement therapy in neurological disease. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361, 1463-1475.	1.8	67
80	Neurocytoma Is a Tumor of Adult Neuronal Progenitor Cells. Journal of Neuroscience, 2006, 26, 12544-12555.	1.7	65
81	Identification of a conserved 125 base-pair Hb9 enhancer that specifies gene expression to spinal motor neurons. Developmental Biology, 2005, 283, 474-485.	0.9	61
82	Direct isolation of committed neuronal progenitor cells from transgenic mice coexpressing spectrally distinct fluorescent proteins regulated by stage-specific neural promoters. Journal of Neuroscience Research, 2001, 65, 220-227.	1.3	60
83	Oligodendrocyte Death in Pelizaeus-Merzbacher Disease Is Rescued by Iron Chelation. Cell Stem Cell, 2019, 25, 531-541.e6.	5.2	60
84	Squamous cell carcinoma as a late complication of intracerebroventricular epidermoid cyst. Journal of Neurosurgery, 1987, 66, 618-620.	0.9	59
85	5-HT _{2B} receptors are expressed on astrocytes from brain and in culture and are a chronic target for all five conventional †serotonin-specific reuptake inhibitors'. Neuron Glia Biology, 2010, 6, 113-125.	2.0	58
86	Fate determination of adult human glial progenitor cells. Neuron Glia Biology, 2009, 5, 45-55.	2.0	56
87	Sustained Mobilization of Endogenous Neural Progenitors Delays Disease Progression in a Transgenic Model of Huntington's Disease. Cell Stem Cell, 2013, 12, 787-799.	5.2	56
88	Fine-tuning the central nervous system: microglial modelling of cells and synapses. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130593.	1.8	56
89	Ependymal/subependymal zone cells of postnatal and adult songbird brain generate both neurons and nonneuronal siblingsin vitro andin vivo. , 1996, 30, 505-520.		55
90	An Activated Protein C Analog Stimulates Neuronal Production by Human Neural Progenitor Cells via a PAR1-PAR3-S1PR ₁ -Akt Pathway. Journal of Neuroscience, 2013, 33, 6181-6190.	1.7	54

#	Article	IF	CITATIONS
91	Cellular Therapy and Induced Neuronal Replacement for Huntington's Disease. Neurotherapeutics, 2011, 8, 577-590.	2.1	53
92	Brain Drain. Scientific American, 2016, 314, 44-49.	1.0	53
93	Modeling the Mutational and Phenotypic Landscapes of Pelizaeus-Merzbacher Disease with Human iPSC-Derived Oligodendrocytes. American Journal of Human Genetics, 2017, 100, 617-634.	2.6	52
94	Glucocorticoids?potent modulators of astrocytic calcium signaling. , 1999, 28, 1-12.		50
95	Pleiotrophin Suppression of Receptor Protein Tyrosine Phosphatase-β/ζ Maintains the Self-Renewal Competence of Fetal Human Oligodendrocyte Progenitor Cells. Journal of Neuroscience, 2012, 32, 15066-15075.	1.7	50
96	The Zika Virus Capsid Disrupts Corticogenesis by Suppressing Dicer Activity and miRNA Biogenesis. Cell Stem Cell, 2020, 27, 618-632.e9.	5.2	48
97	Prospects of Cell Therapy for Disorders of Myelin. Annals of the New York Academy of Sciences, 2008, 1142, 218-249.	1.8	47
98	Human embryonic stem cell-derived motor neurons expressing SOD1 mutants exhibit typical signs of motor neuron degeneration linked to ALS. DMM Disease Models and Mechanisms, 2009, 2, 189-195.	1.2	47
99	Disease specific therapies in leukodystrophies and leukoencephalopathies. Molecular Genetics and Metabolism, 2015, 114, 527-536.	0.5	45
100	Meningeal cells can communicate with astrocytes by calcium signaling. Annals of Neurology, 2000, 47, 18-25.	2.8	44
101	Brain-Derived Neurotrophic Factor Signaling in the HVC Is Required for Testosterone-Induced Song of Female Canaries. Journal of Neuroscience, 2009, 29, 15511-15519.	1.7	44
102	Insulin-like growth factor-1 is a radial cell-associated neurotrophin that promotes neuronal recruitment from the adult songbird ependyma/subependyma. , 1998, 36, 1-15.		43
103	Modeling cognition and disease using human glial chimeric mice. Glia, 2015, 63, 1483-1493.	2.5	42
104	Statin treatment of adult human glial progenitors induces PPARγâ€mediated oligodendrocytic differentiation. Glia, 2008, 56, 954-962.	2.5	40
105	Erythropoietin strikes a new cord. Nature Medicine, 2002, 8, 785-787.	15.2	39
106	Transient Coupling of Ng-CAM Expression to NgCAM-Dependent Calcium Signaling during Migration of New Neurons in the Adult Songbird Brain. Molecular and Cellular Neurosciences, 1996, 7, 29-45.	1.0	38
107	Identification of Novel Tumor-Associated Cell Surface Sialoglycoproteins in Human Glioblastoma Tumors Using Quantitative Proteomics. PLoS ONE, 2014, 9, e110316.	1.1	38
108	Testosterone-Induced Matrix Metalloproteinase Activation Is a Checkpoint for Neuronal Addition to the Adult Songbird Brain. Journal of Neuroscience, 2008, 28, 208-216.	1.7	37

#	Article	IF	CITATIONS
109	Promoter-Based Isolation and Fluorescence-Activated Sorting of Mitotic Neuronal Progenitor Cells from the Adult Mammalian Ependymal/Subependymal Zone. Developmental Neuroscience, 2000, 22, 167-176.	1.0	36
110	Prospective Identification, Isolation, and Profiling of a Telomerase-Expressing Subpopulation of Human Neural Stem Cells, using sox2 Enhancer-Directed Fluorescence-Activated Cell Sorting. Journal of Neuroscience, 2010, 30, 14635-14648.	1.7	36
111	Migration of newly generated neurons upon ependymally derived radial guide cells in explant cultures of the adult songbird forebrain. Glia, 1993, 8, 150-160.	2.5	35
112	Stem cell-based strategies for treating pediatric disorders of myelin. Human Molecular Genetics, 2008, 17, R76-R83.	1.4	35
113	Neurogenetics of Pelizaeus–Merzbacher disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 148, 701-722.	1.0	34
114	Estrogen Promotes the Initial Migration and Inception of NgCAM-Dependent Calcium-Signaling by New Neurons of the Adult Songbird Brain. Molecular and Cellular Neurosciences, 1999, 13, 41-55.	1.0	32
115	Dysregulated Clial Differentiation in Schizophrenia May Be Relieved by Suppression of SMAD4- and REST-Dependent Signaling. Cell Reports, 2019, 27, 3832-3843.e6.	2.9	32
116	Progenitor Cell–Based Treatment of the Pediatric Myelin Disorders. Archives of Neurology, 2011, 68, 848.	4.9	29
117	Neural Progenitor Cells of the Adult Brain. Novartis Foundation Symposium, 2008, , 66-91.	1.2	28
118	Concise Review: Stem Cell-Based Treatment of Pelizaeus-Merzbacher Disease. Stem Cells, 2017, 35, 311-315.	1.4	28
119	Cell-intrinsic glial pathology is conserved across human and murine models of Huntington's disease. Cell Reports, 2021, 36, 109308.	2.9	28
120	Newly generated neurons of the adult songbird brain become functionally active in long-term culture. Developmental Brain Research, 1992, 68, 217-223.	2.1	27
121	Human Clial Progenitor Cells Effectively Remyelinate the Demyelinated Adult Brain. Cell Reports, 2020, 31, 107658.	2.9	27
122	Augmented Therapeutic Efficacy of an Oncolytic Herpes Simplex Virus Type 1 Mutant Expressing ICP34.5 Under the Transcriptional Control ofmusashi1Promoter in the Treatment of Malignant Glioma. Human Gene Therapy, 2007, 18, 63-73.	1.4	26
123	Retrovirally mediated telomerase immortalization of neural progenitor cells. Nature Protocols, 2007, 2, 2815-2825.	5.5	23
124	The Challenges of First-in-Human Stem Cell Clinical Trials: What Does This Mean for Ethics and Institutional Review Boards?. Stem Cell Reports, 2018, 10, 1429-1431.	2.3	22
125	So many progenitors, so little myelin. Nature Neuroscience, 2014, 17, 483-485.	7.1	21
126	Astrocytic connexin 43 potentiates myelin injury in ischemic white matter disease. Theranostics, 2019, 9, 4474-4493.	4.6	21

#	Article	IF	CITATIONS
127	ISSCR guidelines for the transfer of human pluripotent stem cells and their direct derivatives into animal hosts. Stem Cell Reports, 2021, 16, 1409-1415.	2.3	20
128	Review : Neuronal Precursor Cells and Neurogenesis in the Adult Forebrain. Neuroscientist, 1995, 1, 338-350.	2.6	19
129	Progenitor cell-based treatment of glial disease. Progress in Brain Research, 2017, 231, 165-189.	0.9	19
130	Cellâ€Based Therapy for Canavan Disease Using Human iPSCâ€Derived NPCs and OPCs. Advanced Science, 2020, 7, 2002155.	5.6	19
131	Human Glial Chimeric Mice to Define the Role of Glial Pathology in Human Disease. Methods in Molecular Biology, 2019, 1936, 311-331.	0.4	18
132	Direct Reprogramming of Human Fetal- and Stem Cell-Derived Glial Progenitor Cells into Midbrain Dopaminergic Neurons. Stem Cell Reports, 2020, 15, 869-882.	2.3	18
133	Neural progenitor cells of the adult brain. Novartis Foundation Symposium, 2005, 265, 66-80; discussion 82-97.	1.2	17
134	Induced neurogenesis by endogeneous progenitor cells in the adult mammalian brain. Progress in Brain Research, 2002, 138, 451-464.	0.9	16
135	Glial progenitor cell-based treatment of the childhood leukodystrophies. Experimental Neurology, 2016, 283, 476-488.	2.0	15
136	Neural Precursors and Neuronal Production in the Adult Mammalian Forebrain. Annals of the New York Academy of Sciences, 1997, 835, 30-55.	1.8	14
137	Large stem cell grafts could lead to erroneous interpretations of behavioral results?. Nature Medicine, 2007, 13, 118-119.	15.2	14
138	Human iPSCâ€derived neural precursor cells differentiate into multiple cell types to delay disease progression following transplantation into YAC128 Huntington's disease mouse model. Cell Proliferation, 2021, 54, e13082.	2.4	14
139	Directed mobilization of endogenous neural progenitor cells: the intersection of stem cell biology and gene therapy. Current Opinion in Molecular Therapeutics, 2004, 6, 466-72.	2.8	14
140	Diagnosis and Management of Left Main Stem Bronchus Compression. Annals of Otology, Rhinology and Laryngology, 1997, 106, 461-465.	0.6	13
141	Glial progenitor cell-based repair of the dysmyelinated brain: Progression to the clinic. Seminars in Cell and Developmental Biology, 2021, 116, 62-70.	2.3	10
142	Isolation and induction of adult neural progenitor cells. Clinical Neuroscience Research, 2002, 2, 70-79.	0.8	9
143	White matter from fibroblasts. Nature Biotechnology, 2013, 31, 412-413.	9.4	9
144	Adult neurogenesis: From canaries to the clinic. Journal of Neurobiology, 1998, 36, 267-286.	3.7	6

#	Article	IF	CITATIONS
145	A Niche-Defying Feat: Induced Oligoneogenesis in the Adult Dentate Gyrus. Cell Stem Cell, 2008, 3, 125-126.	5.2	5
146	Donor cell memory confers a metastable state of directly converted cells. Cell Stem Cell, 2021, 28, 1291-1306.e10.	5.2	5
147	Transplanted neural progenitors bridge gaps to benefit cord–injured monkeys. Nature Medicine, 2018, 24, 388-390.	15.2	3
148	Glial evolution as a determinant of human behavior and its disorders. Annals of the New York Academy of Sciences, 2020, 1471, 72-85.	1.8	3
149	Cell Therapy for Huntington's Disease: Learning from Failure. Movement Disorders, 2021, 36, 787-788.	2.2	3
150	Measuring Shape Relations Using r-Parallel Sets. Journal of Mathematical Imaging and Vision, 2021, 63, 1069-1083.	0.8	3
151	Spreading Depression—A Gap Junction Mediated Event?. Neuroscience Intelligence Unit, 1996, , 301-312.	0.5	3
152	The need for a standard for informed consent for collection of human fetal material. Stem Cell Reports, 2022, 17, 1245-1247.	2.3	3
153	Cell-Based Therapies for Disorders of the Brain and Spinal Cord. Neurotherapeutics, 2011, 8, 537-538.	2.1	2
154	Stem cells and cell-based therapy in neurodegenerative disease. , 2005, , 347-362.		1
155	Stem Cell Therapy: Cellâ€Based Therapy for Canavan Disease Using Human iPSCâ€Derived NPCs and OPCs (Adv. Sci. 23/2020). Advanced Science, 2020, 7, 2070131.	5.6	1
156	Targeted Induction of Endogenous Neural Stem and Progenitor Cells: A New Strategy for Gene Therapy of Neurological Disease. , 2006, , 53-65.		0
157	CSIG-22. RECONCILING TUMOR HETEROGENEITY IN GLIOBLASTOMA USING A PATHWAY-BASED APPROACH. Neuro-Oncology, 2018, 20, vi47-vi47.	0.6	0
158	CSIG-17. SIGNALING PATHWAY-BASED CLUSTERING OF MASS CYTOMETRY DATA UNCOVERS CELLS ASSOCIATED WITH CLINICAL PROGRESSION IN GLIOBLASTOMA. Neuro-Oncology, 2019, 21, vi47-vi47.	0.6	0
159	CSIG-16. RECONCILING TUMOR HETEROGENEITY IN GLIOBLASTOMA USING A PATHWAY-BASED APPROACH. Neuro-Oncology, 2019, 21, vi47-vi47.	0.6	0
160	OTEH-8. Pathway-based approach reveals sensitivity to radiation when targeting E2F1 in Glioblastoma. Neuro-Oncology Advances, 2021, 3, ii12-ii12.	0.4	0
161	Cellular Plasticity of the Adult Human Brain. , 2005, , 375-xi.		0
162	In Vitro Generation of Precursor-Derived Neurons from Adult Human Epileptic Temporal Neocortex. Neurosurgery, 1996, 39, 636-636.	0.6	0

#	Article	IF	CITATIONS
163	Patience pays in spinal repair. Journal of Clinical Investigation, 2017, 127, 3284-3286.	3.9	0
164	CSIG-16. PATHWAY-BASED APPROACH REVEALS DIFFERENTIAL SENSITIVITY OF GLIOBLASTOMA TO E2F1 INHIBITION. Neuro-Oncology, 2021, 23, vi36-vi36.	0.6	0
165	CSIG-03. RECONCILING TUMOR HETEROGENEITY IN GLIOBLASTOMA USING A PATHWAY-BASED APPROACH. Neuro-Oncology, 2020, 22, ii28-ii28.	0.6	0