
Fabrisia Ambrosio,, Mpt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5027776/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Physical therapy exerts sub-additive and suppressive effects on intracerebral neural stem cell implantation in a rat model of stroke. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 826-843.	4.3	6
2	Meta-analysis Integrated With Multi-omics Data Analysis to Elucidate Pathogenic Mechanisms of Age-Related Knee Osteoarthritis in Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2022, 77, 1321-1334.	3.6	10
3	Men and women display distinct extracellular vesicle biomarker signatures in response to military operational stress. Journal of Applied Physiology, 2022, 132, 1125-1136.	2.5	7
4	Utility of extracellular vesicles as a potential biological indicator of physiological resilience during military operational stress. Physiological Reports, 2022, 10, e15219.	1.7	3
5	Resistance exercise differentially alters extracellular vesicle size and subpopulation characteristics in healthy men and women: an observational cohort study. Physiological Genomics, 2022, 54, 350-359.	2.3	5
6	The biphasic and age-dependent impact of klotho on hallmarks of aging and skeletal muscle function. ELife, 2021, 10, .	6.0	22
7	Treatment of burn contractures with allogeneic human dermal fibroblasts improves Vancouver scar scale: A phase I/II trial. Journal of Plastic, Reconstructive and Aesthetic Surgery, 2021, 74, 3443-3476.	1.0	1
8	Regulation of aged skeletal muscle regeneration by circulating extracellular vesicles. Nature Aging, 2021, 1, 1148-1161.	11.6	59
9	Arsenic Directs Stem Cell Fate by Imparting Notch Signaling Into the Extracellular Matrix Niche. Toxicological Sciences, 2020, 177, 494-505.	3.1	7
10	Arsenic Stimulates Myoblast Mitochondrial Epidermal Growth Factor Receptor to Impair Myogenesis. Toxicological Sciences, 2020, 176, 162-174.	3.1	7
11	Caspase1/11 signaling affects muscle regeneration and recovery following ischemia, and can be modulated by chloroquine. Molecular Medicine, 2020, 26, 69.	4.4	6
12	Taking the Next Steps in Regenerative Rehabilitation: Establishment of a New Interdisciplinary Field. Archives of Physical Medicine and Rehabilitation, 2020, 101, 917-923.	0.9	24
13	Association Of Cognitive Function With BMI And Physical Function In Older Adults: The CogEx Study. Medicine and Science in Sports and Exercise, 2020, 52, 8-8.	0.4	2
14	Klotho: An Elephant in Aging Research. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 1031-1042.	3.6	52
15	Mitochondria are a substrate of cellular memory. Free Radical Biology and Medicine, 2019, 130, 528-541.	2.9	13
16	Regenerative Rehabilitation: Applied Biophysics Meets Stem Cell Therapeutics. Cell Stem Cell, 2018, 22, 306-309.	11.1	65
17	The regenerative rehabilitation collection: a forum for an emerging field. Npj Regenerative Medicine, 2018, 3, 20.	5.2	7
18	Adipose Triglyceride Lipase Activity in Adipocytes, but Not Skeletal Myocytes, Is Essential for Maintaining Normal Contractile Function in Both Young and Old Mice. FASEB Journal, 2018, 32, 852.7.	0.5	0

Fabrisia Ambrosio,, Mpt

#	Article	IF	CITATIONS
19	A Murine Model of Robotic Training to Evaluate Skeletal Muscle Recovery after Injury. Medicine and Science in Sports and Exercise, 2017, 49, 840-847.	0.4	2
20	Aging of the skeletal muscle extracellular matrix drives a stem cell fibrogenic conversion. Aging Cell, 2017, 16, 518-528.	6.7	172
21	Biological effects of dosing aerobic exercise and neuromuscular electrical stimulation in rats. Scientific Reports, 2017, 7, 10830.	3.3	28
22	Regenerative Rehabilitation: Combining Stem Cell Therapies and Activity-Dependent Stimulation. Pediatric Physical Therapy, 2017, 29, S10-S15.	0.6	10
23	Arsenic Promotes NF-Κb-Mediated Fibroblast Dysfunction and Matrix Remodeling to Impair Muscle Stem Cell Function. Stem Cells, 2016, 34, 732-742.	3.2	29
24	Electrodiagnostic Evaluation of Individuals Implanted With Extracellular Matrix for the Treatment of Volumetric Muscle Injury: Case Series. Physical Therapy, 2016, 96, 540-549.	2.4	34
25	Regenerative Rehabilitation and Genomics: Frontiers in Clinical Practice. Physical Therapy, 2016, 96, 430-432.	2.4	8
26	An acellular biologic scaffold treatment for volumetric muscle loss: results of a 13-patient cohort study. Npj Regenerative Medicine, 2016, 1, 16008.	5.2	154
27	Mechanisms by which acellular biologic scaffolds promote functional skeletal muscle restoration. Biomaterials, 2016, 103, 128-136.	11.4	62
28	Neural Stem Cell Therapy and Rehabilitation in the Central Nervous System: Emerging Partnerships. Physical Therapy, 2016, 96, 734-742.	2.4	21
29	Regenerative Rehabilitation: Synergizing Regenerative Medicine Therapies with Rehabilitation for Improved Muscle Regeneration in Muscle Pathologies. Pancreatic Islet Biology, 2016, , 205-224.	0.3	0
30	ADptive plasticity and recovery in preclinical models of stroke. Archives Italiennes De Biologie, 2015, 152, 190-215.	0.4	12
31	Skeletal muscle as a regulator of the longevity protein, Klotho. Frontiers in Physiology, 2014, 5, 189.	2.8	52
32	Targeted Rehabilitation After Extracellular Matrix Scaffold Transplantation for the Treatment of Volumetric Muscle Loss. American Journal of Physical Medicine and Rehabilitation, 2014, 93, S79-S87.	1.4	63
33	An Acellular Biologic Scaffold Promotes Skeletal Muscle Formation in Mice and Humans with Volumetric Muscle Loss. Science Translational Medicine, 2014, 6, 234ra58.	12.4	384
34	Arsenic induces sustained impairment of skeletal muscle and muscle progenitor cell ultrastructure and bioenergetics. Free Radical Biology and Medicine, 2014, 74, 64-73.	2.9	49
35	Introduction to Regenerative Medicine. , 2014, , 1-16.		0
36	Neuromuscular Tissue Engineering. , 2014, , 1-24.		0

#	Article	IF	CITATIONS
37	Arsenic-Stimulated Lipolysis and Adipose Remodeling Is Mediated by G-Protein-Coupled Receptors. Toxicological Sciences, 2013, 134, 335-344.	3.1	50
38	Bioengineering solutions for neural repair and recovery in stroke. Current Opinion in Neurology, 2013, 26, 626-631.	3.6	20
39	The timing of administration of a clinically relevant dose of losartan influences the healing process after contusion induced muscle injury. Journal of Applied Physiology, 2013, 114, 262-273.	2.5	51
40	Neuromuscular Electrical Stimulation as a Method to Maximize the Beneficial Effects of Muscle Stem Cells Transplanted into Dystrophic Skeletal Muscle. PLoS ONE, 2013, 8, e54922.	2.5	41
41	A Murine Model of Muscle Training by Neuromuscular Electrical Stimulation. Journal of Visualized Experiments, 2012, , e3914.	0.3	10
42	Biological Basis of Exerciseâ€Based Treatments for Musculoskeletal Conditions. PM and R, 2011, 3, S59-63.	1.6	7
43	Exercise and duchenne muscular dystrophy: Toward evidenceâ€based exercise prescription. Muscle and Nerve, 2011, 43, 464-478.	2.2	64
44	The Emerging Relationship Between Regenerative Medicine and Physical Therapeutics. Physical Therapy, 2010, 90, 1807-1814.	2.4	50
45	The Synergistic Effect of Treadmill Running on Stem-Cell Transplantation to Heal Injured Skeletal Muscle. Tissue Engineering - Part A, 2010, 16, 839-849.	3.1	70
46	Effect of VEGF on the Regenerative Capacity of Muscle Stem Cells in Dystrophic Skeletal Muscle. Molecular Therapy, 2009, 17, 1788-1798.	8.2	152
47	Functional Overloading of Dystrophic Mice Enhances Muscle-Derived Stem Cell Contribution to Muscle Contractile Capacity. Archives of Physical Medicine and Rehabilitation, 2009, 90, 66-73.	0.9	20
48	Mesenchymal Stem Cells: Emerging Therapy for Duchenne Muscular Dystrophy. PM and R, 2009, 1, 547-559.	1.6	35
49	The Effect of Muscle Loading on Skeletal Muscle Regenerative Potential. American Journal of Physical Medicine and Rehabilitation, 2009, 88, 145-155.	1.4	59
50	Improved Muscle Healing after Contusion Injury by the Inhibitory Effect of Suramin on Myostatin, a Negative Regulator of Muscle Growth. American Journal of Sports Medicine, 2008, 36, 2354-2362.	4.2	93
51	Relationships between Transforming Growth Factor-β1, Myostatin, and Decorin. Journal of Biological Chemistry, 2007, 282, 25852-25863.	3.4	231
52	Comparison of mobility device delivery within Department of Veterans Affairs for individuals with multiple sclerosis versus spinal cord injury. Journal of Rehabilitation Research and Development, 2007, 44, 693.	1.6	15
53	Upper Limb Strength in Individuals With Spinal Cord Injury Who Use Manual Wheelchairs. Journal of Spinal Cord Medicine, 2005, 28, 26-32.	1.4	22
54	Biomechanics and Strength of Manual Wheelchair Users. Journal of Spinal Cord Medicine, 2005, 28, 407-414.	1.4	59

#	Article	IF	CITATIONS
55	Metabolic and contractile influence of carbonic anhydrase III in skeletal muscle is age dependent. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1999, 276, R559-R565.	1.8	15
56	Neuroendocrine, Inflammatory, and Extracellular Vesicle Responses During the Navy Special Warfare Screener Selection Course. Physiological Genomics, 0, , .	2.3	0