List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5027670/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Carbon emissions from smouldering peat in shallow and strong fronts. Proceedings of the Combustion Institute, 2009, 32, 2489-2496.	3.9	86
2	Eruptive Behaviour of Forest Fires. Fire Technology, 2011, 47, 303-320.	3.0	81
3	A calorimetric study of wildland fuels. Experimental Thermal and Fluid Science, 2008, 32, 1381-1389.	2.7	71
4	An analytical model based on radiative heating for the determination of safety distances for wildland fires. Fire Safety Journal, 2011, 46, 520-527.	3.1	67
5	Instrumentation of wildland fire: Characterisation of a fire spreading through a Mediterranean shrub. Fire Safety Journal, 2006, 41, 171-184.	3.1	62
6	Investigation of firebrand generation from an experimental fire: Development of a reliable data collection methodology. Fire Safety Journal, 2017, 91, 864-871.	3.1	60
7	Fire spread experiment across Mediterranean shrub: Influence of wind on flame front properties. Fire Safety Journal, 2006, 41, 229-235.	3.1	59
8	Experimental Procedures Characterising Firebrand Generation in Wildland Fires. Fire Technology, 2016, 52, 731-751.	3.0	59
9	Determination of the main parameters influencing forest fuel combustion dynamics. Fire Safety Journal, 2011, 46, 27-33.	3.1	57
10	Investigation of firebrand production during prescribed fires conducted in a pine forest. Proceedings of the Combustion Institute, 2017, 36, 3263-3270.	3.9	50
11	A MODEL FOR THE SPREAD OF FIRE ACROSS A FUEL BED INCORPORATING THE EFFECTS OF WIND AND SLOPE. Combustion Science and Technology, 2005, 177, 1381-1418.	2.3	49
12	Flammability studies for wildland and wildland–urban interface fires applied to pine needles and solid polymers. Fire Safety Journal, 2012, 54, 203-217.	3.1	48
13	Large eddy simulation of forest canopy flow for wildland fire modeling. Canadian Journal of Forest Research, 2014, 44, 1534-1544.	1.7	48
14	Investigation on the Emission of Volatile Organic Compounds from Heated Vegetation and Their Potential to Cause an Accelerating Forest Fire. Combustion Science and Technology, 2009, 181, 1273-1288.	2.3	45
15	Experimental and numerical studies characterizing the burning dynamics of wildland fuels. Combustion and Flame, 2016, 168, 113-126.	5.2	41
16	Fire spread across pine needle fuel beds: characterization of temperature and velocity distributions within the fire plume. International Journal of Wildland Fire, 2004, 13, 37.	2.4	37
17	Calculation Methods for the Heat Release Rate of Materials of Unknown Composition. Fire Safety Science, 2008, 9, 1165-1176.	0.3	37
18	Utilization of remote sensing techniques for the quantification of fire behavior in two pine stands. Fire Safety Journal, 2017, 91, 845-854.	3.1	35

#	Article	IF	CITATIONS
19	Kinetic investigation on the smouldering combustion of boreal peat. Fuel, 2012, 93, 479-485.	6.4	34
20	A study on burning of crude oil in ice cavities. Proceedings of the Combustion Institute, 2015, 35, 2699-2706.	3.9	31
21	Volatile and semi-volatile organic compounds in smoke exposure of firefighters during prescribed burning in the Mediterranean region. International Journal of Wildland Fire, 2010, 19, 606.	2.4	29
22	Framework for submodel improvement in wildfire modeling. Combustion and Flame, 2018, 190, 12-24.	5.2	29
23	Skeletal and global mechanisms for the combustion of gases released by crushed forest fuels. Combustion and Flame, 2009, 156, 1565-1575.	5.2	28
24	Existing Improvements in Simulation of Fire–Wind Interaction and Its Effects on Structures. Fire, 2021, 4, 27.	2.8	28
25	Experimental study of burning behavior of large-scale crude oil fires in ice cavities. Fire Safety Journal, 2016, 79, 91-99.	3.1	26
26	Local measurements of wildland fire dynamics in a field-scale experiment. Combustion and Flame, 2018, 194, 452-463.	5.2	26
27	Physical modelling of forest fire spreading through heterogeneous fuel beds. International Journal of Wildland Fire, 2011, 20, 625.	2.4	25
28	Smouldering natural fires: comparison of burning dynamics in boreal peat and Mediterranean humus. , 2008, , .		25
29	Experimental study of laminar flames obtained by the homogenization of three forest fuels. International Journal of Thermal Sciences, 2009, 48, 488-501.	4.9	24
30	Heat and Mass Transfer in Fires: Scaling Laws, Ignition of Solid Fuels and Application to Forest Fires. The Open Thermodynamics Journal, 2010, 4, 145-155.	0.6	23
31	Bulk and particle properties of pine needle fuel beds – influence on combustion. International Journal of Wildland Fire, 2014, 23, 1076.	2.4	20
32	On the wind advection influence on the fire spread across a fuel bed: modelling by a semi-physical approach and testing with experiments. Fire Safety Journal, 2001, 36, 491-513.	3.1	19
33	An analysis of gas-induced explosions in vented enclosures in lithium-ion batteries. Journal of Energy Storage, 2022, 51, 104438.	8.1	17
34	Proposal for Theoretical Improvement of Semi-Physical Forest Fire Spread Models Thanks to a Multiphase Approach: Application to a Fire Spread Model Across a Fuel Bed. Combustion Science and Technology, 2001, 162, 59-83.	2.3	16
35	Energetic potential and kinetic behavior of peats. Journal of Thermal Analysis and Calorimetry, 2014, 117, 1497-1508.	3.6	16
36	Fire Behavior, Fuel Consumption, and Turbulence and Energy Exchange during Prescribed Fires in Pitch Pine Forests. Atmosphere, 2020, 11, 242.	2.3	16

#	Article	IF	CITATIONS
37	Reduction of a multiphase formulation to include a simplified flow in a semi-physical model of fire spread across a fuel bed. International Journal of Thermal Sciences, 2003, 42, 95-105.	4.9	15
38	Experimental and Numerical Analysis of Formation and Flame Precession of Fire Whirls: A Review. Fire, 2021, 4, 43.	2.8	14
39	Comparative Study To Evaluate the Drying Kinetics of Boreal Peats from Micro to Macro Scales. Energy & Fuels, 2012, 26, 349-356.	5.1	12
40	Experimental investigation of the impact of oxygen flux on the burning dynamics of forest fuel beds. Fire Safety Journal, 2017, 91, 855-863.	3.1	11
41	An Experimental Study Evaluating the Burning Dynamics of Pitch Pine Needle Beds Using the FPA. Fire Safety Science, 2014, 11, 1406-1419.	0.3	11
42	On physical and mathematical modeling of the initiation and propagation of peat fires. Journal of Engineering Physics and Thermophysics, 2009, 82, 1235-1243.	0.6	9
43	Detailed physical modeling of wildland fire dynamics at field scale - An experimentally informed evaluation. Fire Safety Journal, 2021, 120, 103051.	3.1	9
44	Numerical investigation of the flow characteristics around two tandem propane fires in a windy environment. Fuel, 2021, 286, 119344.	6.4	9
45	Flame spread predictions over linear discrete fuel arrays using an empirical B-number model and stagnation point flow. Combustion and Flame, 2021, 234, 111644.	5.2	9
46	Coupled Assessment of Fire Behavior and Firebrand Dynamics. Frontiers in Mechanical Engineering, 2021, 7, .	1.8	9
47	Clarifying the meaning of mantras in wildland fire behaviour modelling: reply to Cruz et al. (2017). International Journal of Wildland Fire, 2018, 27, 770.	2.4	8
48	Numerical Investigation of the Effect of Sloped Terrain on Wind-Driven Surface Fire and Its Impact on Idealized Structures. Fire, 2021, 4, 94.	2.8	8
49	A review of post-incident studies for wildland-urban interface fires. Journal of Safety Science and Resilience, 2020, 1, 59-65.	2.3	7
50	Forced convection fire spread along wooden dowel array. Fire Safety Journal, 2021, 120, 103090.	3.1	7
51	A global model for the combustion of gas mixtures released from forest fuels. Proceedings of the Combustion Institute, 2009, 32, 2575-2582.	3.9	6
52	A Strategy to Elaborate Forest Fire Spread Models for Management Tools Including a Computer Time-Saving Algorithm. International Journal of Modelling and Simulation, 2002, 22, 213-224.	3.3	5
53	Coupling of a simplified flow with a phenomenological fire spread model. Comptes Rendus - Mecanique, 2002, 330, 783-790.	2.1	5
54	A preliminary study of wildland fire pattern indicator reliability following an experimental fire. Journal of Fire Sciences, 2017, 35, 359-378.	2.0	5

#	Article	IF	CITATIONS
55	Experimental study of fire spread through discontinuous fuels without flame contact. Fire Safety Journal, 2021, 120, 103066.	3.1	5
56	Comparison of sensitivity matrix method, power function-based response surface method, and artificial neural network in the analysis of building fire egress performance. Journal of Building Engineering, 2021, 43, 102860.	3.4	5
57	Numerical Simulation of the Effect of Fire Intensity on Wind Driven Surface Fire and Its Impact on an Idealized Building. Fire, 2022, 5, 17.	2.8	5
58	On the Interest of Studying Degradation Gases for Forest Fuel Combustion Modeling. Combustion Science and Technology, 2008, 180, 1637-1658.	2.3	4
59	A dimensional analysis of forest fuel layer ignition model: Application to the ignition of pine needle litters. Journal of Fire Sciences, 2015, 33, 320-335.	2.0	4
60	Wildland Fires. , 2016, , 3283-3302.		4
61	On the Role of Bulk Properties and Fuel Species on the Burning Dynamics of Pine Forest Litters. Fire Safety Science, 2011, 10, 1401-1414.	0.3	3
62	A sensitivity matrix method to understand the building fire egress performance gap. Fire Safety Journal, 2022, 127, 103516.	3.1	3
63	An experimental approach to the evaluation of prescribed fire behavior. , 0, , 41-53.		2
64	Design and implementation of a portable, large-scale wind tunnel for wildfire research. Fire Safety Journal, 2022, 131, 103607.	3.1	2
65	Modeling Peat-Fire Hazards. , 2015, , 89-120.		1
66	Computational and experimental study of laminar flames from forest fuels. , 2006, , .		0
67	Drying Kinetics of the Selected Grass Fuels under Isothermal Condition. Advanced Materials Research, 0, 1085, 345-350.	0.3	0
68	Testing of different skeletal and global mechanisms for modeling combustion of degradation gases involved in wildland fire. Fire Safety Science, 2008, 9, 1129-1140.	0.3	0