Madhavi Srinivasan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5027652/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Constructing Hierarchical Spheres from Large Ultrathin Anatase TiO ₂ Nanosheets with Nearly 100% Exposed (001) Facets for Fast Reversible Lithium Storage. Journal of the American Chemical Society, 2010, 132, 6124-6130.	6.6	1,215
2	Formation of Fe ₂ O ₃ Microboxes with Hierarchical Shell Structures from Metal–Organic Frameworks and Their Lithium Storage Properties. Journal of the American Chemical Society, 2012, 134, 17388-17391.	6.6	935
3	Assembling carbon-coated α-Fe ₂ O ₃ hollow nanohorns on the CNT backbone for superior lithium storage capability. Energy and Environmental Science, 2012, 5, 5252-5256.	15.6	767
4	Insertion-Type Electrodes for Nonaqueous Li-Ion Capacitors. Chemical Reviews, 2014, 114, 11619-11635.	23.0	632
5	Controlled Growth of NiMoO ₄ Nanosheet and Nanorod Arrays on Various Conductive Substrates as Advanced Electrodes for Asymmetric Supercapacitors. Advanced Energy Materials, 2015, 5, 1401172.	10.2	559
6	A Review on Design Strategies for Carbon Based Metal Oxides and Sulfides Nanocomposites for High Performance Li and Na Ion Battery Anodes. Advanced Energy Materials, 2017, 7, 1601424.	10.2	486
7	Achieving high specific charge capacitances in Fe3O4/reduced graphene oxide nanocomposites. Journal of Materials Chemistry, 2011, 21, 3422.	6.7	430
8	Research Progress on Negative Electrodes for Practical Liâ€lon Batteries: Beyond Carbonaceous Anodes. Advanced Energy Materials, 2015, 5, 1402225.	10.2	415
9	Recent developments in electrode materials for sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 9353-9378.	5.2	413
10	MS ₂ (M = Co and Ni) Hollow Spheres with Tunable Interiors for Highâ€Performance Supercapacitors and Photovoltaics. Advanced Functional Materials, 2014, 24, 2155-2162.	7.8	398
11	In situ growth of NiCo2S4 nanosheets on graphene for high-performance supercapacitors. Chemical Communications, 2013, 49, 10178.	2.2	384
12	LiMnPO4 – A next generation cathode material for lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 3518.	5.2	383
13	Recent Advancements in Allâ€Vanadium Redox Flow Batteries. Advanced Materials Interfaces, 2016, 3, 1500309.	1.9	351
14	Fabrication of Spinel One-Dimensional Architectures by Single-Spinneret Electrospinning for Energy Storage Applications. ACS Nano, 2015, 9, 1945-1954.	7.3	349
15	3D micro-porous conducting carbon beehive by single step polymer carbonization for high performance supercapacitors: the magic of in situ porogen formation. Energy and Environmental Science, 2014, 7, 728-735.	15.6	348
16	Lithiumâ€lon Conducting Electrolyte Salts for Lithium Batteries. Chemistry - A European Journal, 2011, 17, 14326-14346.	1.7	341
17	A Highâ€Energy Lithiumâ€Ion Capacitor by Integration of a 3D Interconnected Titanium Carbide Nanoparticle Chain Anode with a Pyridineâ€Derived Porous Nitrogenâ€Doped Carbon Cathode. Advanced Functional Materials, 2016, 26, 3082-3093.	7.8	330
18	Multi-functional electrospun nanofibres for advances in tissue regeneration, energy conversion & amp; storage, and water treatment. Chemical Society Reviews, 2016, 45, 1225-1241.	18.7	325

#	Article	IF	CITATIONS
19	Graphene-supported anatase TiO2 nanosheets for fast lithium storage. Chemical Communications, 2011, 47, 5780.	2.2	305
20	Green Synthesis of NiO Nanobelts with Exceptional Pseudo apacitive Properties. Advanced Energy Materials, 2012, 2, 1188-1192.	10.2	297
21	Synthesis and electrochemical properties of electrospun V2O5 nanofibers as supercapacitor electrodes. Journal of Materials Chemistry, 2010, 20, 6720.	6.7	285
22	α-Fe2O3 nanotubes with superior lithium storage capability. Chemical Communications, 2011, 47, 8061.	2.2	265
23	Two-Dimensional Tin Disulfide Nanosheets for Enhanced Sodium Storage. ACS Nano, 2015, 9, 11371-11381.	7.3	257
24	Cobalt Sulfide Nanosheet/Graphene/Carbon Nanotube Nanocomposites as Flexible Electrodes for Hydrogen Evolution. Angewandte Chemie - International Edition, 2014, 53, 12594-12599.	7.2	252
25	Electrospun carbon nanofibers and their hybrid composites as advanced materials for energy conversion and storage. Nano Energy, 2016, 22, 361-395.	8.2	248
26	The facile synthesis of hierarchical porous flower-like NiCo2O4 with superior lithium storage properties. Journal of Materials Chemistry A, 2013, 1, 10935.	5.2	247
27	Ultralong α-MoO ₃ Nanobelts: Synthesis and Effect of Binder Choice on Their Lithium Storage Properties. Journal of Physical Chemistry C, 2012, 116, 12508-12513.	1.5	246
28	Synthesis of CuO nanostructures from Cu-based metal organic framework (MOF-199) for application as anode for Li-ion batteries. Nano Energy, 2013, 2, 1158-1163.	8.2	244
29	Electrospun Porous NiCo ₂ O ₄ Nanotubes as Advanced Electrodes for Electrochemical Capacitors. Chemistry - A European Journal, 2013, 19, 5892-5898.	1.7	244
30	Oneâ€Pot Synthesis of Tunable Crystalline Ni ₃ S ₄ @Amorphous MoS ₂ Core/Shell Nanospheres for Highâ€Performance Supercapacitors. Small, 2015, 11, 3694-3702.	5.2	243
31	Engineering Nonspherical Hollow Structures with Complex Interiors by Template-Engaged Redox Etching. Journal of the American Chemical Society, 2010, 132, 16271-16277.	6.6	241
32	Carbon coated nano-LiTi2(PO4)3 electrodes for non-aqueous hybrid supercapacitors. Physical Chemistry Chemical Physics, 2012, 14, 5808.	1.3	236
33	1D hollow α-Fe2O3 electrospun nanofibers as high performance anode material for lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 23049.	6.7	227
34	SnO ₂ Nanoparticles with Controlled Carbon Nanocoating as High-Capacity Anode Materials for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2009, 113, 20504-20508.	1.5	222
35	Activated carbons derived from coconut shells as high energy density cathode material for Li-ion capacitors. Scientific Reports, 2013, 3, 3002.	1.6	222
36	Preparation of nitrogen- and phosphorous co-doped carbon microspheres and their superior performance as anode in sodium-ion batteries. Carbon, 2016, 99, 556-563.	5.4	218

#	Article	IF	CITATIONS
37	Electrospun hollow nanofibers for advanced secondary batteries. Nano Energy, 2017, 39, 111-139.	8.2	214
38	Nanoweb anodes composed of one-dimensional, high aspect ratio, size tunable electrospun ZnFe2O4 nanofibers for lithium ion batteries. Journal of Materials Chemistry, 2011, 21, 14999.	6.7	210
39	High-performance flexible quasi-solid-state zinc-ion batteries with layer-expanded vanadium oxide cathode and zinc/stainless steel mesh composite anode. Nano Energy, 2019, 62, 94-102.	8.2	209
40	Anion Texturing Towards Dendriteâ€Free Zn Anode for Aqueous Rechargeable Batteries. Angewandte Chemie - International Edition, 2021, 60, 7213-7219.	7.2	209
41	Fast Synthesis of α-MoO ₃ Nanorods with Controlled Aspect Ratios and Their Enhanced Lithium Storage Capabilities. Journal of Physical Chemistry C, 2010, 114, 8675-8678.	1.5	208
42	Hybrid supercapacitor with nano-TiP2O7 as intercalation electrode. Journal of Power Sources, 2011, 196, 8850-8854.	4.0	204
43	High Aspect Ratio Electrospun CuO Nanofibers as Anode Material for Lithium-Ion Batteries with Superior Cycleability. Journal of Physical Chemistry C, 2012, 116, 18087-18092.	1.5	202
44	A Flexible Quasi olid tate Asymmetric Electrochemical Capacitor Based on Hierarchical Porous V ₂ O ₅ Nanosheets on Carbon Nanofibers. Advanced Energy Materials, 2015, 5, 1500753.	10.2	198
45	Cobalt Oxide Nanowall Arrays on Reduced Graphene Oxide Sheets with Controlled Phase, Grain Size, and Porosity for Li-Ion Battery Electrodes. Journal of Physical Chemistry C, 2011, 115, 8400-8406.	1.5	196
46	Printable photo-supercapacitor using single-walled carbon nanotubes. Energy and Environmental Science, 2011, 4, 413-416.	15.6	188
47	Architecting a Stable High-Energy Aqueous Al-Ion Battery. Journal of the American Chemical Society, 2020, 142, 15295-15304.	6.6	188
48	One-pot synthesis of uniform carbon-coated MoO2 nanospheres for high-rate reversible lithium storage. Chemical Communications, 2010, 46, 6906.	2.2	185
49	Controllable Preparation of Square Nickel Chalcogenide (NiS and NiSe ₂) Nanoplates for Superior Li/Na Ion Storage Properties. ACS Applied Materials & Interfaces, 2016, 8, 25261-25267.	4.0	185
50	TiO ₂ hollow spheres with large amount of exposed (001) facets for fast reversible lithium storage. Journal of Materials Chemistry, 2011, 21, 1677-1680.	6.7	182
51	Electrospun TiO ₂ –Graphene Composite Nanofibers as a Highly Durable Insertion Anode for Lithium Ion Batteries. Journal of Physical Chemistry C, 2012, 116, 14780-14788.	1.5	181
52	Few-layered Ni(OH)2 nanosheets for high-performance supercapacitors. Journal of Power Sources, 2015, 295, 323-328.	4.0	180
53	Electrospun NiO nanofibers as high performance anode material for Li-ion batteries. Journal of Power Sources, 2013, 227, 284-290.	4.0	178
54	Modulation of Single Atomic Co and Fe Sites on Hollow Carbon Nanospheres as Oxygen Electrodes for Rechargeable Zn–Air Batteries. Small Methods, 2021, 5, e2000751.	4.6	178

#	Article	IF	CITATIONS
55	Metal oxyfluorides TiOF2 and NbO2F as anodes for Li-ion batteries. Journal of Power Sources, 2006, 162, 1312-1321.	4.0	177
56	CuO nanostructures supported on Cu substrate as integrated electrodes for highly reversible lithium storage. Nanoscale, 2011, 3, 1618.	2.8	174
57	Undesired Reactions in Aqueous Rechargeable Zinc Ion Batteries. ACS Energy Letters, 2021, 6, 1773-1785.	8.8	173
58	High power lithium-ion hybrid electrochemical capacitors using spinel LiCrTiO4 as insertion electrode. Journal of Materials Chemistry, 2012, 22, 16026.	6.7	167
59	TiO ₂ /AC Composites for Synergistic Adsorption-Photocatalysis Processes: Present Challenges and Further Developments for Water Treatment and Reclamation. Critical Reviews in Environmental Science and Technology, 2011, 41, 1173-1230.	6.6	164
60	Large-scale synthesis of highly uniform Fe 1â^'x S nanostructures as a high-rate anode for sodium ion batteries. Nano Energy, 2017, 37, 81-89.	8.2	161
61	Apatite - An Adaptive Framework Structure. Reviews in Mineralogy and Geochemistry, 2005, 57, 307-401.	2.2	159
62	MOF-derived crumpled-sheet-assembled perforated carbon cuboids as highly effective cathode active materials for ultra-high energy density Li-ion hybrid electrochemical capacitors (Li-HECs). Nanoscale, 2014, 6, 4387.	2.8	159
63	Carbon Nanotubeâ€Encapsulated Noble Metal Nanoparticle Hybrid as a Cathode Material for Liâ€Oxygen Batteries. Advanced Functional Materials, 2014, 24, 6516-6523.	7.8	157
64	Constructing high energy density non-aqueous Li-ion capacitors using monoclinic TiO2-B nanorods as insertion host. Journal of Materials Chemistry A, 2013, 1, 6145.	5.2	154
65	P2–Na _{<i>x</i>} Co _{<i>y</i>} Mn _{1–<i>y</i>} O ₂ (<i>y</i> = Cycling Stability. Chemistry of Materials, 2016, 28, 2041-2051.	0,) Tj ETQq 3.2	1 1 0.78431 154
66	Morphology, structure and electrochemical properties of single phase electrospun vanadium pentoxide nanofibers for lithium ion batteries. Journal of Power Sources, 2011, 196, 6465-6472.	4.0	152
67	Amorphous Fe–Ni–P–B–O Nanocages as Efficient Electrocatalysts for Oxygen Evolution Reaction. ACS Nano, 2019, 13, 12969-12979.	7.3	151
68	Green Recycling Methods to Treat Lithiumâ€lon Batteries Eâ€Waste: A Circular Approach to Sustainability. Advanced Materials, 2022, 34, e2103346.	11.1	148
69	Unveiling TiNb ₂ O ₇ as an Insertion Anode for Lithium Ion Capacitors with High Energy and Power Density. ChemSusChem, 2014, 7, 1858-1863.	3.6	147
70	Progress in Rechargeable Aqueous Zinc―and Aluminumâ€Ion Battery Electrodes: Challenges and Outlook. Advanced Sustainable Systems, 2019, 3, 1800111.	2.7	147
71	Effect of poly(ethylene oxide) on ionic conductivity and electrochemical properties of poly(vinylidenefluoride) based polymer gel electrolytes prepared by electrospinning for lithium ion batteries. Journal of Power Sources, 2014, 245, 283-291.	4.0	144
72	Photocatalytic degradation of bisphenol-A by nitrogen-doped TiO2 hollow sphere in a vis-LED photoreactor. Applied Catalysis B: Environmental, 2010, 95, 414-422.	10.8	143

#	Article	IF	CITATIONS
73	TiO2 polymorphs in â€~rocking-chair' Li-ion batteries. Materials Today, 2015, 18, 345-351.	8.3	143
74	Machine Learning: An Advanced Platform for Materials Development and State Prediction in Lithiumâ€ion Batteries. Advanced Materials, 2022, 34, e2101474.	11.1	140
75	Superior lithium storage properties of α-Fe2O3 nano-assembled spindles. Nano Energy, 2013, 2, 890-896.	8.2	133
76	Novel Preparation of Nâ€Doped SnO ₂ Nanoparticles via Laserâ€Assisted Pyrolysis: Demonstration of Exceptional Lithium Storage Properties. Advanced Materials, 2017, 29, 1603286.	11.1	132
77	Effect of aluminium doping on cathodic behaviour of LiNi0.7Co0.3O2. Journal of Power Sources, 2001, 93, 156-162.	4.0	131
78	Electrospun nanofibers: A prospective electro-active material for constructing high performance Li-ion batteries. Chemical Communications, 2015, 51, 2225-2234.	2.2	131
79	Research progress in Na-ion capacitors. Journal of Materials Chemistry A, 2016, 4, 7538-7548.	5.2	131
80	Cobalt nanoparticles encapsulated in carbon nanotube-grafted nitrogen and sulfur co-doped multichannel carbon fibers as efficient bifunctional oxygen electrocatalysts. Journal of Materials Chemistry A, 2017, 5, 4949-4961.	5.2	129
81	Electrospun polyaniline nanofibers web electrodes for supercapacitors. Journal of Applied Polymer Science, 2013, 129, 1660-1668.	1.3	128
82	Fabrication of High Energyâ€Density Hybrid Supercapacitors Using Electrospun V ₂ O ₅ Nanofibers with a Selfâ€Supported Carbon Nanotube Network. ChemPlusChem, 2012, 77, 570-575.	1.3	125
83	Exceptional Performance of TiNb ₂ O ₇ Anode in All One-Dimensional Architecture by Electrospinning. ACS Applied Materials & Interfaces, 2014, 6, 8660-8666.	4.0	124
84	Cadmium and Lead Ion Capture with Three Dimensionally Ordered Macroporous Hydroxyapatite. Environmental Science & Technology, 2006, 40, 7054-7059.	4.6	122
85	Novel polymer electrolyte based on cob-web electrospun multi component polymer blend of polyacrylonitrile/poly(methyl methacrylate)/polystyrene for lithium ion batteries—Preparation and electrochemical characterization. Journal of Power Sources, 2012, 202, 299-307.	4.0	122
86	Best Practices for Mitigating Irreversible Capacity Loss of Negative Electrodes in Liâ€lon Batteries. Advanced Energy Materials, 2017, 7, 1602607.	10.2	122
87	A review on the recycling of spent lithium-ion batteries (LIBs) by the bioleaching approach. Chemosphere, 2021, 282, 130944.	4.2	122
88	Lignin@Nafion Membranes Forming Zn Solid–Electrolyte Interfaces Enhance the Cycle Life for Rechargeable Zincâ€lon Batteries. ChemSusChem, 2019, 12, 4889-4900.	3.6	120
89	Degradation of Methylene Blue by Three-Dimensionally Ordered Macroporous Titania. Environmental Science & Technology, 2007, 41, 4405-4409.	4.6	118
90	Nanostructured spinel LiNi 0.5 Mn 1.5 O 4 as new insertion anode for advanced Li-ion capacitors with high power capability. Nano Energy, 2015, 12, 69-75.	8.2	114

#	Article	IF	CITATIONS
91	Ultrathin nickel oxide nanosheets for enhanced sodium and lithium storage. Journal of Power Sources, 2015, 274, 755-761.	4.0	114
92	Emerging rechargeable aqueous aluminum ion battery: Status, challenges, and outlooks. Nano Materials Science, 2020, 2, 248-263.	3.9	110
93	Effect of nano-clay on ionic conductivity and electrochemical properties of poly(vinylidene fluoride) based nanocomposite porous polymer membranes and their application as polymer electrolyte in lithium ion batteries. European Polymer Journal, 2013, 49, 307-318.	2.6	109
94	Monodispersed Ag nanoparticles loaded on the PVP-assisted synthetic Bi2O2CO3 microspheres with enhanced photocatalytic and supercapacitive performances. Journal of Materials Chemistry A, 2013, 1, 7630.	5.2	108
95	Atomic layer deposited (ALD) SnO2 anodes with exceptional cycleability for Li-ion batteries. Nano Energy, 2013, 2, 720-725.	8.2	107
96	Design of 3-Dimensional Hierarchical Architectures of Carbon and Highly Active Transition Metals (Fe,) Tj ETQq0 2017, 29, 1665-1675.) 0 rgBT /(3.2	Overlock 10 T 104
97	Particle Size Effect of Silver Nanoparticles Decorated Single Walled Carbon Nanotube Electrode for Supercapacitors. Journal of the Electrochemical Society, 2010, 157, A179.	1.3	103
98	Controlled Growth of CuS on Electrospun Carbon Nanofibers as an Efficient Counter Electrode for Quantum Dot-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 16526-16535.	1.5	102
99	Recycling of cathode from spent lithium iron phosphate batteries. Journal of Hazardous Materials, 2020, 399, 123068.	6.5	101
100	Synthesis of multimodal porous ZnCo2O4 and its electrochemical properties as an anode material for lithium ion batteries. Journal of Power Sources, 2015, 294, 112-119.	4.0	99
101	Bio-mass derived mesoporous carbon as superior electrode in all vanadium redox flow battery with multicouple reactions. Journal of Power Sources, 2015, 274, 846-850.	4.0	97
102	Nonaqueous Lithiumâ€lon Capacitors with High Energy Densities using Trigolâ€Reduced Graphene Oxide Nanosheets as Cathodeâ€Active Material. ChemSusChem, 2013, 6, 2240-2244.	3.6	96
103	Hollow Nanospheres Constructed by CoS ₂ Nanosheets with a Nitrogenâ€Dopedâ€Carbon Coating for Energyâ€Storage and Photocatalysis. ChemSusChem, 2014, 7, 2212-2220.	3.6	96
104	Inverse opal manganese dioxide constructed by few-layered ultrathin nanosheets as high-performance cathodes for aqueous zinc-ion batteries. Nano Research, 2019, 12, 1347-1353.	5.8	95
105	Amorphous manganese dioxide with the enhanced pseudocapacitive performance for aqueous rechargeable zinc-ion battery. Chemical Engineering Journal, 2020, 396, 125221.	6.6	94
106	Controlled Synthesis of BiOCl Hierarchical Selfâ€Assemblies with Highly Efficient Photocatalytic Properties. Chemistry - an Asian Journal, 2013, 8, 258-268.	1.7	93
107	TiO2-reduced graphene oxide nanocomposites by microwave-assisted forced hydrolysis as excellent insertion anode for Li-ion battery and capacitor. Journal of Power Sources, 2016, 327, 171-177.	4.0	93
108	Silver nanoparticle-decorated carbon nanotubes as bifunctional gas-diffusion electrodes for zinc–air batteries. Journal of Power Sources, 2010, 195, 4350-4355.	4.0	90

#	Article	IF	CITATIONS
109	Size- and shape-controlled synthesis of ZnIn2S4 nanocrystals with high photocatalytic performance. CrystEngComm, 2013, 15, 1922.	1.3	90
110	Synthesis of porous LiMn2O4 hollow nanofibers by electrospinning with extraordinary lithium storage properties. Chemical Communications, 2013, 49, 6677.	2.2	90
111	Li-ion vs. Na-ion capacitors: A performance evaluation with coconut shell derived mesoporous carbon and natural plant based hard carbon. Chemical Engineering Journal, 2017, 316, 506-513.	6.6	90
112	Identifying the Origin and Contribution of Surface Storage in TiO ₂ (B) Nanotube Electrode by In Situ Dynamic Valence State Monitoring. Advanced Materials, 2018, 30, e1802200.	11.1	90
113	Layered VOPO ₄ as a Cathode Material for Rechargeable Zinc-Ion Battery: Effect of Polypyrrole Intercalation in the Host and Water Concentration in the Electrolyte. ACS Applied Energy Materials, 2019, 2, 8667-8674.	2.5	90
114	High-Performing Mesoporous Iron Oxalate Anodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2012, 4, 7011-7019.	4.0	89
115	Layered Na _{<i>x</i>} MnO _{2+<i>z</i>} in Sodium Ion Batteries–Influence of Morphology on Cycle Performance. ACS Applied Materials & Interfaces, 2014, 6, 8059-8065.	4.0	89
116	Synthesis of TiO2 hollow nanofibers by co-axial electrospinning and its superior lithium storage capability in full-cell assembly with olivine phosphate. Nanoscale, 2013, 5, 5973.	2.8	87
117	Vanadium-based polyoxometalate as new material for sodium-ion battery anodes. Journal of Power Sources, 2015, 288, 270-277.	4.0	87
118	Synthesis of α-Fe ₂ O ₃ /carbon nanocomposites as high capacity electrodes for next generation lithium ion batteries: a review. Journal of Materials Chemistry A, 2016, 4, 18223-18239.	5.2	85
119	Oligomer-salt derived 3D, heavily nitrogen doped, porous carbon for Li-ion hybrid electrochemical capacitors application. Carbon, 2014, 80, 462-471.	5.4	84
120	Effect of the Ionic Conductivity on the Performance of Polyelectrolyteâ€Based Supercapacitors. Advanced Functional Materials, 2010, 20, 4344-4350.	7.8	83
121	Taguchi optimization design of diameter-controlled synthesis of multi walled carbon nanotubes for the adsorption of Pb(II) and Ni(II) from chemical industry wastewater. Chemosphere, 2021, 266, 128937.	4.2	83
122	Repurposing of Fruit Peel Waste as a Green Reductant for Recycling of Spent Lithium-Ion Batteries. Environmental Science & Technology, 2020, 54, 9681-9692.	4.6	81
123	Improved Elevated Temperature Performance of Al-Intercalated V ₂ O ₅ Electrospun Nanofibers for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2012, 4, 3270-3277.	4.0	80
124	Investigating FeVO4 as a cathode material for aqueous aluminum-ion battery. Journal of Power Sources, 2019, 426, 151-161.	4.0	80
125	A chemically bonded NaTi ₂ (PO ₄) ₃ /rGO microsphere composite as a high-rate insertion anode for sodium-ion capacitors. Journal of Materials Chemistry A, 2017, 5, 17506-17516.	5.2	80
126	High-Energy Density Asymmetric Supercapacitor Based on Electrospun Vanadium Pentoxide and Polyaniline Nanofibers in Aqueous Electrolyte. Journal of the Electrochemical Society, 2012, 159, A1481-A1488.	1.3	79

#	Article	IF	CITATIONS
127	Unveiling two-dimensional TiS ₂ as an insertion host for the construction of high energy Li-ion capacitors. Journal of Materials Chemistry A, 2017, 5, 9177-9181.	5.2	76
128	Facile Approach to Prepare Porous CaSnO ₃ Nanotubes via a Single Spinneret Electrospinning Technique as Anodes for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2012, 4, 6005-6012.	4.0	75
129	A General Method to Grow Porous αâ€Fe ₂ O ₃ Nanosheets on Substrates as Integrated Electrodes for Lithiumâ€Ion Batteries. Advanced Materials Interfaces, 2014, 1, 1400050.	1.9	74
130	Improving the energy density of Li-ion capacitors using polymer-derived porous carbons as cathode. Electrochimica Acta, 2014, 130, 766-770.	2.6	74
131	High-Crystallinity Urchin-like VS ₄ Anode for High-Performance Lithium-Ion Storage. ACS Applied Materials & Interfaces, 2018, 10, 14727-14734.	4.0	74
132	Synthesis and characterization of nitrogen-doped TiO2/AC composite for the adsorption–photocatalytic degradation of aqueous bisphenol-A using solar light. Catalysis Today, 2010, 151, 8-13.	2.2	73
133	From Waste Paper Basket to Solid State and Liâ€HEC Ultracapacitor Electrodes: A Value Added Journey for Shredded Office Paper. Small, 2014, 10, 4395-4402.	5.2	73
134	Carbon-coated Li 3 V 2 (PO 4) 3 as insertion type electrode for lithium-ion hybrid electrochemical capacitors: An evaluation of anode and cathodic performance. Journal of Power Sources, 2015, 281, 310-317.	4.0	73
135	High-performance hybrid electrochemical capacitor with binder-free Nb ₂ O ₅ @graphene. RSC Advances, 2014, 4, 37389.	1.7	71
136	Metal extraction from spent lithium-ion batteries (LIBs) at high pulp density by environmentally friendly bioleaching process. Journal of Cleaner Production, 2021, 280, 124242.	4.6	71
137	Tuning the morphology of ZnMn2O4 lithium ion battery anodes by electrospinning and its effect on electrochemical performance. RSC Advances, 2013, 3, 2812.	1.7	70
138	Boosting Zn-Ion Storage Performance of Bronze-Type VO ₂ <i>via</i> Ni-Mediated Electronic Structure Engineering. ACS Applied Materials & Interfaces, 2020, 12, 36110-36118.	4.0	70
139	Design and synthesis of porous channel-rich carbon nanofibers for self-standing oxygen reduction reaction and hydrogen evolution reaction bifunctional catalysts in alkaline medium. Journal of Materials Chemistry A, 2017, 5, 7507-7515.	5.2	69
140	A novel strategy to construct high performance lithium-ion cells using one dimensional electrospun nanofibers, electrodes and separators. Nanoscale, 2013, 5, 10636.	2.8	68
141	Synthesis and Cathodic Properties of LiCo[sub 1â^'y]Rh[sub y]O[sub 2] (0â‰9â‰0.2) and LiRhO[sub 2]. Journal of the Electrochemical Society, 2001, 148, A1279.	1.3	67
142	One-Step Synthesis of SnO2and TiO2Hollow Nanostructures with Various Shapes and Their Enhanced Lithium Storage Properties. Chemistry - A European Journal, 2012, 18, 7561-7567.	1.7	67
143	A novel SWCNT-polyoxometalate nanohybrid material as an electrode for electrochemical supercapacitors. Nanoscale, 2015, 7, 7934-7941.	2.8	67
144	Controlled synthesis of α-FeOOH nanorods and their transformation to mesoporous α-Fe2O3, Fe3O4@C nanorods as anodes for lithium ion batteries. RSC Advances, 2013, 3, 15316.	1.7	66

#	Article	IF	CITATIONS
145	Highly mesoporous carbon from Teak wood sawdust as prospective electrode for the construction of high energy Li-ion capacitors. Electrochimica Acta, 2017, 228, 131-138.	2.6	66
146	All carbon based high energy lithium-ion capacitors from biomass: The role of crystallinity. Journal of Power Sources, 2019, 414, 96-102.	4.0	66
147	Template-Free Electrochemical Deposition of Interconnected ZnSb Nanoflakes for Li-Ion Battery Anodes. Chemistry of Materials, 2011, 23, 1032-1038.	3.2	65
148	Electrospun Zn _{1–<i>x</i>} Mn _{<i>x</i>} Fe ₂ O ₄ Nanofibers As Anodes for Lithium-Ion Batteries and the Impact of Mixed Transition Metallic Oxides on Battery Performance. ACS Applied Materials & Interfaces, 2013, 5, 5461-5467.	4.0	65
149	A Polyoxovanadate as an Advanced Electrode Material for Supercapacitors. ChemPhysChem, 2014, 15, 2162-2169.	1.0	65
150	Layered Trichalcogenidophosphate: A New Catalyst Family for Water Splitting. Nano-Micro Letters, 2018, 10, 67.	14.4	65
151	Effect of Cr dopant on the cathodic behavior of LiCoO2. Electrochimica Acta, 2002, 48, 219-226.	2.6	64
152	Bioleaching as an Eco-Friendly Approach for Metal Recovery from Spent NMC-Based Lithium-Ion Batteries at a High Pulp Density. ACS Sustainable Chemistry and Engineering, 2021, 9, 3060-3069.	3.2	64
153	Synthesis and Enhanced Lithium Storage Properties of Electrospun V ₂ O ₅ Nanofibers in Full-Cell Assembly with a Spinel Li ₄ Ti ₅ O ₁₂ Anode. ACS Applied Materials & Interfaces, 2013, 5, 3475-3480.	4.0	63
154	Template assisted assembly of cobalt nanobowl arrays. Journal of Materials Chemistry, 2005, 15, 4424.	6.7	62
155	Water in Rechargeable Multivalentâ€lon Batteries: An Electrochemical Pandora's Box. ChemSusChem, 2019, 12, 379-396.	3.6	62
156	SBA-15 derived carbon-supported SnO2 nanowire arrays with improved lithium storage capabilities. Journal of Materials Chemistry, 2011, 21, 13860.	6.7	61
157	Hierarchical three-dimensional Fe3O4@porous carbon matrix/graphene anodes for high performance lithium ion batteries. Electrochimica Acta, 2018, 260, 965-973.	2.6	61
158	Effect of LiBOB Additive on the Electrochemical Performance of LiCoPO ₄ . Journal of the Electrochemical Society, 2012, 159, A1435-A1439.	1.3	60
159	Silica-assisted bottom-up synthesis of graphene-like high surface area carbon for highly efficient ultracapacitor and Li-ion hybrid capacitor applications. Journal of Materials Chemistry A, 2016, 4, 5578-5591.	5.2	60
160	Anion Texturing Towards Dendriteâ€Free Zn Anode for Aqueous Rechargeable Batteries. Angewandte Chemie, 2021, 133, 7289-7295.	1.6	59
161	Gas separation performance of poly(4-vinylpyridine)/polyetherimide composite hollow fibers. Journal of Membrane Science, 2001, 182, 111-123.	4.1	58
162	β-FeOOH: An Earth-Abundant High-Capacity Negative Electrode Material for Sodium-Ion Batteries. Chemistry of Materials, 2015, 27, 5340-5348.	3.2	57

#	Article	IF	CITATIONS
163	Nanoscale ion intermixing induced activation of Fe ₂ O ₃ /MnO ₂ composites for application in lithium ion batteries. Journal of Materials Chemistry A, 2017, 5, 8510-8518.	5.2	57
164	Chemical Lithiation Studies on Combustion Synthesized V ₂ O ₅ Cathodes with Full Cell Application for Lithium Ion Batteries. Journal of the Electrochemical Society, 2013, 160, A1016-A1024.	1.3	54
165	Phase transition of hollow-porous α-Fe ₂ O ₃ microsphere based anodes for lithium ion batteries during high rate cycling. Journal of Materials Chemistry A, 2016, 4, 16569-16575.	5.2	54
166	Polycrystalline zinc stannate as an anode material for sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 14033-14038.	5.2	53
167	Exceptional performance of a high voltage spinel LiNi _{0.5} Mn _{1.5} O ₄ cathode in all one dimensional architectures with an anatase TiO ₂ anode by electrospinning. Nanoscale, 2014, 6, 8926.	2.8	52
168	Co ₃ O ₄ Nanosheets as Battery-Type Electrode for High-Energy Li-Ion Capacitors: A Sustained Li-Storage <i>via</i> Conversion Pathway. ACS Nano, 2020, 14, 10648-10654.	7.3	52
169	Asymmetric pathways in the electrochemical conversion reaction of NiO as battery electrode with high storage capacity. Scientific Reports, 2014, 4, 7133.	1.6	51
170	High-rate and elevated temperature performance of electrospun V2O5 nanofibers carbon-coated by plasma enhanced chemical vapour deposition. Nano Energy, 2013, 2, 57-64.	8.2	50
171	Extraordinary long-term cycleability of TiO ₂ -B nanorods as anodes in full-cell assembly with electrospun PVdF-HFP membranes. Journal of Materials Chemistry A, 2013, 1, 308-316.	5.2	50
172	Bronze-type vanadium dioxide holey nanobelts as high performing cathode material for aqueous aluminium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 12716-12722.	5.2	50
173	Mesoporous Cobalt Oxalate Nanostructures as High-Performance Anode Materials for Lithium-Ion Batteries: Ex Situ Electrochemical Mechanistic Study. Journal of Physical Chemistry C, 2013, 117, 16316-16325.	1.5	48
174	Controlled synthesis of porous spinel cobaltite core-shell microspheres as high-performance catalysts for rechargeable Li–O2 batteries. Nano Energy, 2015, 13, 718-726.	8.2	48
175	Melt-Spun Fe–Sb Intermetallic Alloy Anode for Performance Enhanced Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 39399-39406.	4.0	48
176	Interfacial Phenomena/Capacities Beyond Conversion Reaction Occurring in Nanoâ€sized Transitionâ€Metalâ€Oxideâ€Based Negative Electrodes in Lithiumâ€Ion Batteries: A Review. ChemElectroChem, 2017, 4, 2727-2754.	1.7	48
177	High energy Li-ion capacitor and battery using graphitic carbon spheres as an insertion host from cooking oil. Journal of Materials Chemistry A, 2018, 6, 3242-3248.	5.2	48
178	Synthesis and crystallization of macroporous hydroxyapatite. Journal of Solid State Chemistry, 2005, 178, 2838-2845.	1.4	47
179	Electrochemical performance of NASICON type carbon coated LiTi2(PO4)3 with a spinel LiMn2O4 cathode. RSC Advances, 2012, 2, 7534.	1.7	47
180	Free-standing electrospun carbon nanofibres—a high performance anode material for lithium-ion batteries. Journal Physics D: Applied Physics, 2012, 45, 265302.	1.3	47

#	Article	IF	CITATIONS
181	Sodium Vanadium Oxide: A New Material for Highâ€Performance Symmetric Sodiumâ€lon Batteries. ChemPhysChem, 2014, 15, 2121-2128.	1.0	47
182	Two Dimensional TiS ₂ as a Promising Insertion Anode for Naâ€ion Battery. ChemistrySelect, 2018, 3, 524-528.	0.7	47
183	Electrochemical Lithium Insertion Behavior of Combustion Synthesized V2O5Cathodes for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2012, 159, A273-A280.	1.3	46
184	α-Fe ₂ O ₃ -mediated growth and carbon nanocoating of ultrafine SnO ₂ nanorods as anode materials for Li-ion batteries. Journal of Materials Chemistry, 2012, 22, 2526-2531.	6.7	46
185	LiCrTiO ₄ : A Highâ€Performance Insertion Anode for Lithiumâ€lon Batteries. ChemPhysChem, 2012, 13, 3263-3266.	1.0	46
186	Macroporous carbon from human hair: A journey towards the fabrication of high energy Li-ion capacitors. Electrochimica Acta, 2015, 182, 474-481.	2.6	46
187	Morphology controlled lithium storage in Li ₃ VO ₄ anodes. Journal of Materials Chemistry A, 2018, 6, 456-463.	5.2	46
188	Electrospun eggroll-like CaSnO ₃ nanotubes with high lithium storage performance. Nanoscale, 2013, 5, 134-138.	2.8	45
189	Does carbon coating really improves the electrochemical performance of electrospun SnO2 anodes?. Electrochimica Acta, 2014, 121, 109-115.	2.6	45
190	Morphology controlled Si-modified LiNi 0.5 Mn 1.5 O 4 microspheres as high performance high voltage cathode materials in lithium ion batteries. Journal of Power Sources, 2017, 346, 89-96.	4.0	45
191	High room-temperature hole mobility in Ge0.7Si0.3/Ge/Ge0.7Si0.3 modulation-doped heterostructures. Journal of Applied Physics, 2001, 89, 2497-2499.	1.1	44
192	Synthesis and improved electrochemical properties of Li ₂ MnSiO ₄ cathodes. Journal Physics D: Applied Physics, 2011, 44, 152001.	1.3	43
193	Dual phase polymer gel electrolyte based on non-woven poly(vinylidenefluoride-co-hexafluoropropylene)–layered clay nanocomposite fibrous membranes for lithium ion batteries. Materials Research Bulletin, 2013, 48, 526-537.	2.7	43
194	3D Cu-doped CoS porous nanosheet films as superior counterelectrodes for quantum dot-sensitized solar cells. Nano Energy, 2015, 16, 163-172.	8.2	42
195	From Electrodes to Electrodes: Building Highâ€Performance Liâ€Ion Capacitors and Batteries from Spent Lithiumâ€Ion Battery Carbonaceous Materials. ChemElectroChem, 2019, 6, 1407-1412.	1.7	42
196	Rechargeable Al-Metal Aqueous Battery Using NaMnHCF as a Cathode: Investigating the Role of Coated-Al Anode Treatments for Superior Battery Cycling Performance. ACS Applied Energy Materials, 2020, 3, 8627-8635.	2.5	42
197	Nitrogen-doped TiO2/AC bi-functional composite prepared by two-stage calcination for enhanced synergistic removal of hydrophobic pollutant using solar irradiation. Catalysis Today, 2011, 161, 46-52.	2.2	41
198	High performance lithium-ion cells using one dimensional electrospun TiO2 nanofibers with spinel cathode. RSC Advances, 2012, 2, 7983.	1.7	41

#	Article	IF	CITATIONS
199	Carbon oated LiTi ₂ (PO ₄) ₃ : An Ideal Insertion Host for Lithiumâ€ŀon and Sodiumâ€ŀon Batteries. Chemistry - an Asian Journal, 2014, 9, 878-882.	1.7	40
200	βâ€Co(OH) ₂ Nanosheets: A Superior Pseudocapacitive Electrode for Highâ€Energy Supercapacitors. Chemistry - an Asian Journal, 2017, 12, 2127-2133.	1.7	40
201	An original recycling method for Li-ion batteries through large scale production of Metal Organic Frameworks. Journal of Hazardous Materials, 2020, 385, 121603.	6.5	40
202	Electrochemical Performance of α-MnO ₂ Nanorods/Activated Carbon Hybrid Supercapacitor. Nanoscience and Nanotechnology Letters, 2012, 4, 724-728.	0.4	40
203	The crystal chemistry of the alkaline-earth apatites A10(PO4)6CuxOy(H)z (A = Ca, Sr and Ba). Dalton Transactions, 2009, , 6722.	1.6	39
204	Combustion-synthesized sodium manganese (cobalt) oxides as cathodes for sodium ion batteries. Journal of Solid State Electrochemistry, 2013, 17, 1923-1929.	1.2	39
205	Study on effect of poly (ethylene oxide) addition and in-situ porosity generation on poly (vinylidene) Tj ETQq1 1 Sources, 2014, 267, 48-57.	0.784314 4.0	rgBT /Over o 39
206	Pre-lithiated Li x Mn 2 O 4 : A new approach to mitigate the irreversible capacity loss in negative electrodes for Li-ion battery. Electrochimica Acta, 2016, 208, 225-230.	2.6	39
207	High energy Li-ion capacitors with conversion type Mn ₃ O ₄ particulates anchored to few layer graphene as the negative electrode. Journal of Materials Chemistry A, 2016, 4, 15134-15139.	5.2	39
208	Overlithiated Li 1+x Ni 0.5 Mn 1.5 O 4 in all one dimensional architecture with conversion type α-Fe 2 O 3 : A new approach to eliminate irreversible capacity loss. Electrochimica Acta, 2016, 215, 647-651.	2.6	39
209	Rusted iron wire waste into high performance anode (α-Fe ₂ O ₃) for Li-ion batteries: an efficient waste management approach. Green Chemistry, 2016, 18, 1395-1404.	4.6	39
210	Enhancing charge-storage capacity of non-volatile memory devices using template-directed assembly of gold nanoparticles. Nanoscale, 2012, 4, 2296.	2.8	38
211	Effect of silver on the photocatalytic degradation of humic acid. Catalysis Today, 2008, 131, 250-254.	2.2	37
212	Chelating Ligands as Electrolyte Solvent for Rechargeable Zinc-Ion Batteries. Chemistry of Materials, 2021, 33, 1330-1340.	3.2	37
213	Grid-Connected Energy Storage Systems: State-of-the-Art and Emerging Technologies. Proceedings of the IEEE, 2023, 111, 397-420.	16.4	37
214	Transient carrier velocities in bulk GaAs: Quantitative comparison between terahertz data and ensemble Monte Carlo calculations. Applied Physics Letters, 2002, 81, 679-681.	1.5	36
215	Flexible single-walled carbon nanotube/polycellulose papers for lithium-ion batteries. Nanotechnology, 2012, 23, 495401.	1.3	36
216	One-pot solvothermal synthesis of Co1â^'xMnxC2O4 and their application as anode materials for lithium-ion batteries. Journal of Alloys and Compounds, 2015, 638, 324-333.	2.8	36

#	Article	IF	CITATIONS
217	Experimental Elucidation of a Graphenothermal Reduction Mechanism of Fe ₂ O ₃ : An Enhanced Anodic Behavior of an Exfoliated Reduced Graphene Oxide/Fe ₃ O ₄ Composite in Li-Ion Batteries. Journal of Physical Chemistry C, 2017, 121, 3778-3789.	1.5	36
218	Bimodal N-doped P25-TiO2/AC composite: Preparation, characterization, physical stability, and synergistic adsorptive-solar photocatalytic removal of sulfamethazine. Applied Catalysis A: General, 2012, 427-428, 125-136.	2.2	35
219	Graphene Oxide‧upported βâ€√in Telluride Composite for Sodium―and Lithiumâ€Ion Battery Anodes. Energy Technology, 2018, 6, 127-133.	1.8	35
220	Superior Li-ion storage of VS ₄ nanowires anchored on reduced graphene. Nanoscale, 2019, 11, 9556-9562.	2.8	35
221	Carbonâ€Coated Li ₃ Nd ₃ W ₂ O ₁₂ : A High Power and Lowâ€Voltage Insertion Anode with Exceptional Cycleability for Liâ€Ion Batteries. Advanced Energy Materials, 2014, 4, 1301715.	10.2	34
222	Ultralong Durability of Porous αâ€Fe ₂ O ₃ Nanofibers in Practical Liâ€Ion Configuration with LiMn ₂ O ₄ Cathode. Advanced Science, 2015, 2, 1500050.	5.6	34
223	Silicon Doping of High Voltage Spinel LiNi 0.5 Mn 1.5 O 4 towards Superior Electrochemical Performance of Lithium Ion Batteries. Electrochimica Acta, 2016, 213, 904-910.	2.6	34
224	Nanostructured intermetallic FeSn2-carbonaceous composites as highly stable anode for Na-ion batteries. Journal of Power Sources, 2017, 343, 296-302.	4.0	34
225	Polymeric Nanomaterials Based on the Buckybowl Motif: Synthesis through Ring-Opening Metathesis Polymerization and Energy Storage Applications. ACS Macro Letters, 2017, 6, 1212-1216.	2.3	32
226	1.3†V superwide potential window sponsored by Na-Mn-O plates as cathodes towards aqueous rechargeable sodium-ion batteries. Chemical Engineering Journal, 2019, 370, 742-748.	6.6	32
227	Hydrogen-Bonding Interactions in Hybrid Aqueous/Nonaqueous Electrolytes Enable Low-Cost and Long-Lifespan Sodium-Ion Storage. ACS Applied Materials & Interfaces, 2020, 12, 22862-22872.	4.0	32
228	Green Closed-Loop Cathode Regeneration from Spent NMC-Based Lithium-Ion Batteries through Bioleaching. ACS Sustainable Chemistry and Engineering, 2022, 10, 2634-2644.	3.2	32
229	In situ X-ray absorption near edge structure studies and charge transfer kinetics of Na ₆ [V ₁₀ O ₂₈] electrodes. Physical Chemistry Chemical Physics, 2017, 19, 3358-3365.	1.3	31
230	High energy Li-ion capacitors using two-dimensional TiSe _{0.6} S _{1.4} as insertion host. Journal of Materials Chemistry A, 2017, 5, 19819-19825.	5.2	31
231	A General Strategy toward Carbon Clothâ€Based Hierarchical Films Constructed by Porous Nanosheets for Superior Photocatalytic Activity. Small, 2015, 11, 2429-2436.	5.2	30
232	Polypyrrole-coated hierarchical porous composites nanoarchitectures for advanced solid-state flexible hybrid devices. Nano Energy, 2016, 19, 307-317.	8.2	30
233	Covalent Assembly of Gold Nanoparticles for Nonvolatile Memory Applications. ACS Applied Materials & Interfaces, 2011, 3, 4619-4625.	4.0	29
234	Elongated graphitic hollow nanofibers from vegetable oil as prospective insertion host for constructing advanced high energy Li-lon capacitor and battery. Carbon, 2018, 134, 9-14.	5.4	29

#	Article	IF	CITATIONS
235	Synthesis of high volumetric capacity graphene oxide-supported tellurantimony Na- and Li-ion battery anodes by hydrogen peroxide sol gel processing. Journal of Colloid and Interface Science, 2018, 512, 165-171.	5.0	29
236	The crystallographic and magnetic characteristics of Sr2CrO4 (K2NiF4-type) and Sr10(CrO4)6F2 (apatite-type). Journal of Solid State Chemistry, 2007, 180, 1538-1546.	1.4	28
237	Electrospun Hierarchical CaCo ₂ O ₄ Nanofibers with Excellent Lithium Storage Properties. Chemistry - A European Journal, 2013, 19, 14823-14830.	1.7	28
238	Electrospun TiO2â~'δ Nanofibers as Insertion Anode for Li-Ion Battery Applications. Journal of Physical Chemistry C, 2014, 118, 16776-16781.	1.5	28
239	Graphene oxide supported sodium stannate lithium ion battery anodes by the peroxide route: low temperature and no waste processing. Journal of Materials Chemistry A, 2015, 3, 20681-20689.	5.2	28
240	Fabrication of New 2.4â€V Lithiumâ€lon Cell with Carbonâ€Coated LiTi ₂ (PO ₄) ₃ as the Cathode. ChemElectroChem, 2015, 2, 231-235.	1.7	28
241	Study of lithium conducting single ion conductor based on polystyrene sulfonate for lithium battery application. Polymer, 2016, 99, 748-755.	1.8	28
242	Performance-improved Li-O ₂ batteries by tailoring the phases of Mo _x C porous nanorods as an efficient cathode. Nanoscale, 2018, 10, 14877-14884.	2.8	28
243	Beyond intercalation based sodium-ion batteries: the role of alloying anodes, efficient sodiation mechanisms and recent progress. Sustainable Energy and Fuels, 2018, 2, 2567-2582.	2.5	27
244	Effect of Conducting Salts in Ionic Liquid Electrolytes for Enhanced Cyclability of Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 23972-23981.	4.0	27
245	Hollow Mesoporous Co(PO ₃) ₂ @Carbon Polyhedra as High Performance Anode Materials for Lithium Ion Batteries. Journal of Physical Chemistry C, 2019, 123, 8599-8606.	1.5	27
246	Citric Acid Assisted Solid State Synthesis of V ₂ O ₃ , V ₂ O ₃ /C and V ₂ O ₃ /Graphene Composites for Liâ€ion Battery Anode Applications. ChemElectroChem, 2019, 6, 493-503.	1.7	27
247	Robust, High-Density Zinc Oxide Nanoarrays by Nanoimprint Lithography-Assisted Area-Selective Atomic Layer Deposition. Journal of Physical Chemistry C, 2012, 116, 23729-23734.	1.5	26
248	Mechanism of Na ⁺ Insertion in Alkali Vanadates and Its Influence on Battery Performance. Advanced Energy Materials, 2016, 6, 1502336.	10.2	26
249	Amorphous Vanadium Oxide Thin Films as Stable Performing Cathodes of Lithium and Sodium-Ion Batteries. Nanoscale Research Letters, 2018, 13, 363.	3.1	26
250	Supersaturated "water-in-salt―hybrid electrolyte towards building high voltage Na-ion capacitors with wide temperatures operation. Journal of Power Sources, 2020, 472, 228558.	4.0	26
251	Plastic crystalline-semi crystalline polymer composite electrolyte based on non-woven poly(vinylidenefluoride-co-hexafluoropropylene) porous membranes for lithium ion batteries. Electrochimica Acta, 2014, 125, 362-370.	2.6	25
252	Electrochemical performance of hematite nanoparticles derived from spherical maghemite and elongated goethite particles. Journal of Power Sources, 2015, 276, 291-298.	4.0	25

#	Article	IF	CITATIONS
253	Cathodic properties of (Al, Mg) co-doped LiNi0.7Co0.3O2. Solid State Ionics, 2002, 152-153, 199-205.	1.3	24
254	An XPS study of Al2Au and AlAu4 intermetallic oxidation. Applied Surface Science, 2007, 253, 6217-6221.	3.1	24
255	Covalent Assembly of Gold Nanoparticles: An Application toward Transistor Memory. Journal of Physical Chemistry B, 2012, 116, 9784-9790.	1.2	24
256	Dendrimer-encapsulated Pt nanoparticles in supercritical medium: Synthesis, characterization, and application to device fabrication. Journal of Colloid and Interface Science, 2009, 332, 505-510.	5.0	23
257	Platinum/polyaniline transparent counter electrodes for quasi-solid dye-sensitized solar cells with electrospun PVDF-HFP/TiO2 membrane electrolyte. Electrochimica Acta, 2013, 105, 447-454.	2.6	23
258	Selfâ€Assembled Ultrathin Anatase TiO ₂ Nanosheets with Reactive (001) Facets for Highly Enhanced Reversible Li Storage. ChemElectroChem, 2014, 1, 539-543.	1.7	23
259	Carbon coated LiTi2(PO4)3 as new insertion anode for aqueous Na-ion batteries. Journal of Alloys and Compounds, 2014, 603, 48-51.	2.8	23
260	Indanthrone derived disordered graphitic carbon as promising insertion anode for sodium ion battery with long cycle life. Electrochimica Acta, 2014, 146, 218-223.	2.6	23
261	Excellent performance of Fe3O4-perforated graphene composite as promising anode in practical Li-ion configuration with LiMn2O4. Energy Storage Materials, 2015, 1, 152-157.	9.5	23
262	A comparative evaluation of differently synthesized high surface area carbons for Li-ion hybrid electrochemical supercapacitor application: Pore size distribution holds the key. Applied Materials Today, 2016, 2, 1-6.	2.3	23
263	Conversion of uniform graphene oxide/polypyrrole composites into functionalized 3D carbon nanosheet frameworks with superior supercapacitive and sodium-ion storage properties. Journal of Power Sources, 2016, 307, 17-24.	4.0	23
264	Progress and Challenges on Battery Waste Management :A Critical Review. ChemistrySelect, 2020, 5, 6182-6193.	0.7	23
265	Paper like free-standing hybrid single-walled carbon nanotubes air electrodes for zinc–air batteries. Journal of Solid State Electrochemistry, 2012, 16, 1585-1593.	1.2	22
266	Symmetric Aqueous Rechargeable Lithium Battery Using Na1.16V3O8Nanobelts Electrodes for Safe High Volume Energy Storage Applications. Journal of the Electrochemical Society, 2014, 161, A256-A263.	1.3	22
267	Electrospun CuFe2O4 nanotubes as anodes for high-performance lithium-ion batteries. Journal of Energy Chemistry, 2014, 23, 301-307.	7.1	22
268	Highly Stable Intermetallic FeSn ₂ â€Graphite Composite Anode for Sodiumâ€ŀon Batteries. ChemElectroChem, 2017, 4, 1932-1936.	1.7	21
269	Synthesis and physicochemical characterization of room temperature ionic liquids and their application in sodium ion batteries. Physical Chemistry Chemical Physics, 2018, 20, 29412-29422.	1.3	21
270	Surface-Modified Hollow Ternary NiCo ₂ P _{<i>x</i>>/i>} Catalysts for Efficient Electrochemical Water Splitting and Energy Storage. ACS Applied Materials & Interfaces, 2019, 11, 39798-39808.	4.0	21

#	Article	IF	CITATIONS
271	Microstructurally engineered nanocrystalline Fe–Sn–Sb anodes: towards stable high energy density sodium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 14145-14152.	5.2	21
272	Improved performance of polyvinylidenefluoride–hexafluoropropylene based nanocomposite polymer membranes containing lithium bis(oxalato)borate by phase inversion for lithium batteries. Solid State Sciences, 2011, 13, 1047-1051.	1.5	20
273	A Multiâ€Walled Carbon Nanotube Core with Graphene Oxide Nanoribbon Shell as Anode Material for Sodium Ion Batteries. Advanced Materials Interfaces, 2016, 3, 1600357.	1.9	20
274	Vanadium Oxide Thin Film Formation on Graphene Oxide by Microexplosive Decomposition of Ammonium Peroxovanadate and Its Application as a Sodium Ion Battery Anode. Langmuir, 2018, 34, 2741-2747.	1.6	20
275	Copper nanoparticles embedded in a polyimide film for non-volatile memory applications. Materials Letters, 2012, 68, 287-289.	1.3	19
276	Integrating three-dimensional graphene/Fe ₃ O ₄ @C composite and mesoporous Co(OH) ₂ nanosheets arrays/graphene foam into a superior asymmetric electrochemical capacitor. RSC Advances, 2015, 5, 88191-88201.	1.7	19
277	Synthesis of SnS2 single crystals and its Li-storage performance with LiMn2O4 cathode. Applied Materials Today, 2016, 5, 68-72.	2.3	19
278	Mesoscopic magnetic iron oxide spheres for high performance Li-ion battery anode: a new pulsed laser induced reactive micro-bubble synthesis process. Journal of Materials Chemistry A, 2013, 1, 13932.	5.2	18
279	A novel ionic liquid for Li ion batteries – uniting the advantages of guanidinium and piperidinium cations. RSC Advances, 2014, 4, 1996-2003.	1.7	18
280	Exploring the influence of iron substitution in lithium rich layered oxides Li ₂ Ru _{1â^'x} Fe _x O ₃ : triggering the anionic redox reaction. Journal of Materials Chemistry A, 2017, 5, 14387-14396.	5.2	18
281	CoSe ₂ -Decorated NbSe ₂ Nanosheets Fabricated via Cation Exchange for Li Storage. ACS Applied Materials & Interfaces, 2018, 10, 37773-37778.	4.0	18
282	High power Na-ion capacitor with TiS2 as insertion host. Scripta Materialia, 2019, 161, 54-57.	2.6	18
283	Multiscalar Investigation of FeVO ₄ Conversion Cathode for a Low Concentration Zn(CF ₃ SO ₃) ₂ Rechargeable Znâ€Ion Aqueous Battery. Batteries and Supercaps, 2020, 3, 619-630.	2.4	18
284	Enhanced Functional and Structural Characteristics of Poly(vinylidene-trifluoroethylene) Copolymer Thin Films by Corona Poling. Journal of the Electrochemical Society, 2007, 154, G224.	1.3	17
285	Fabrication of High Energy Li–Ion Capacitors from Orange Peel Derived Porous Carbon. ChemistrySelect, 2017, 2, 5051-5058.	0.7	17
286	Solvothermal synthesis of Li3VO4: Morphology control and electrochemical performance as anode for lithium-ion batteries. International Journal of Hydrogen Energy, 2017, 42, 22167-22174.	3.8	17
287	Fe ₂ Mo ₃ O ₈ /exfoliated graphene oxide: solid-state synthesis, characterization and anodic application in Li-ion batteries. New Journal of Chemistry, 2018, 42, 12817-12823.	1.4	17
288	Green Synthesis of a Nanocrystalline Tin Disulfide-Reduced Graphene Oxide Anode from Ammonium Peroxostannate: a Highly Stable Sodium-Ion Battery Anode. ACS Sustainable Chemistry and Engineering, 2020, 8, 5485-5494.	3.2	17

#	Article	IF	CITATIONS
289	Low- and high-field transport properties of modulation-doped Si/SiGe and Ge/SiGe heterostructures: Effect of phonon confinement in germanium quantum wells. Physical Review B, 2000, 61, 16807-16818.	1.1	16
290	Non-aqueous energy storage devices using graphene nanosheets synthesized by green route. AIP Advances, 2013, 3, .	0.6	16
291	(0 0 1) faceted mesoporous anatase TiO 2 microcubes as superior insertion anode in practical Li-ion configuration with LiMn 2 O 4. Energy Storage Materials, 2016, 3, 106-112.	9.5	16
292	Evaluation of electrochemical performances of ZnFe ₂ O ₄ /γ-Fe ₂ O ₃ nanoparticles prepared by laser pyrolysis. New Journal of Chemistry, 2017, 41, 9236-9243.	1.4	16
293	Practical Li-Ion Battery Assembly with One-Dimensional Active Materials. Journal of Physical Chemistry Letters, 2017, 8, 4031-4037.	2.1	16
294	Enabling Al-metal anodes for aqueous electrochemical cells by using low-cost eutectic mixtures as artificial protective interphase. Chemical Engineering Journal, 2022, 435, 134742.	6.6	16
295	Importance of nanostructure for reversible Li-insertion into octahedral sites of LiNi0.5Mn1.5O4 and its application towards aqueous Li-ion chemistry. Journal of Power Sources, 2015, 280, 240-245.	4.0	15
296	Red Mud and Liâ€lon Batteries: A Magnetic Connection. ChemSusChem, 2016, 9, 2193-2200.	3.6	15
297	The processing and characterization of magnetic nanobowls. Thin Solid Films, 2006, 505, 93-96.	0.8	14
298	Pseudomorphic 2A→ 2M→ 2H phase transitions in lanthanum strontium germanate electrolyte apatites. Dalton Transactions, 2009, , 8280.	1.6	14
299	Hollow Spheres: MS2(M = Co and Ni) Hollow Spheres with Tunable Interiors for High-Performance Supercapacitors and Photovoltaics (Adv. Funct. Mater. 15/2014). Advanced Functional Materials, 2014, 24, 2154-2154.	7.8	14
300	Electrospun Singleâ€Phase Na _{1.2} V ₃ O ₈ Materials with Tunable Morphologies as Cathodes for Rechargeable Lithiumâ€ion Batteries. ChemElectroChem, 2015, 2, 837-846.	1.7	14
301	High surface area porous carbon for ultracapacitor application by pyrolysis of polystyrene containing pendant carboxylic acid groups prepared via click chemistry. Materials Today Communications, 2015, 4, 166-175.	0.9	14
302	Graphene based nanocomposites for alloy (SnO2), and conversion (Fe3O4) type efficient anodes for Li-ion battery applications. Composites Science and Technology, 2016, 130, 88-95.	3.8	14
303	Electrochemically Induced Amorphization and Unique Lithium and Sodium Storage Pathways in FeSbO4 Nanocrystals. ACS Applied Materials & Interfaces, 2019, 11, 20082-20090.	4.0	14
304	Crystal chemistry of mimetite, Pb ₁₀ (AsO ₄) ₆ Cl _{1.48} O _{0.26} , and finnemanite, Pb ₁₀ (AsO ₃) ₆ Cl ₂ . Acta Crystallographica Section B: Structural Science, 2008, 64, 34-41	1.8	13
305	Exploring Anatase TiO ₂ Nanofibers as New Cathode for Constructing 1.6 V Class "Rocking hair―Type Liâ€ion Cells. Particle and Particle Systems Characterization, 2016, 33, 306-310.	1.2	13
306	Electrochemistry-related aspects of safety of graphene-based non-aqueous electrochemical supercapacitors: a case study with MgO-decorated few-layer graphene as an electrode material. New Journal of Chemistry, 2019, 43, 9793-9801.	1.4	13

#	Article	IF	CITATIONS
307	Batteries: Progress in Rechargeable Aqueous Zinc―and Aluminumâ€Ion Battery Electrodes: Challenges and Outlook (Adv. Sustainable Syst. 1/2019). Advanced Sustainable Systems, 2019, 3, 1970004.	2.7	13
308	An Insight into the Electrochemical Activity of Al-doped V ₂ O ₃ . Journal of the Electrochemical Society, 2020, 167, 100514.	1.3	13
309	Cobalt–ferrite nanobowl arrays: Curved magnetic nanostructures. Journal of Materials Research, 2007, 22, 1250-1254.	1.2	12
310	Crystalline Li3V6O16 rods as high-capacity anode materials for aqueous rechargeable lithium batteries (ARLB). RSC Advances, 2014, 4, 28601-28605.	1.7	12
311	Combining Organic and Inorganic Wastes to Form Metal–Organic Frameworks. Materials, 2020, 13, 441.	1.3	12
312	Synthesis and characterization of three-dimensionally ordered macroporous ternary oxide. Journal of Solid State Chemistry, 2006, 179, 866-872.	1.4	11
313	LiVPO ₄ F: A New Cathode for High-Energy Lithium Ion Capacitors. ChemistrySelect, 2016, 1, 3316-3322.	0.7	11
314	Mesoporous Titanium Oxynitride Monoliths from Block Copolymer-Directed Self-Assembly of Metal–Urea Additives. Langmuir, 2020, 36, 10803-10810.	1.6	11
315	Note: Electrochemical cell for <i>in operando</i> X-ray diffraction measurements on a conventional X-ray diffractometer. Review of Scientific Instruments, 2015, 86, 086102.	0.6	10
316	Unveiling the Fabrication of "Rocking-Chair―Type 3.2 and 1.2 V Class Cells Using Spinel LiNi _{0.5} Mn _{1.5} O ₄ as Cathode with Li ₄ Ti ₅ O ₁₂ . Journal of Physical Chemistry C, 2015, 119, 24332-24336.	1.5	10
317	The fabrication of LiMn2O4 and Na1.16V3O8 based full cell aqueous rechargeable battery to power portable wearable electronics devices. Materials and Design, 2016, 93, 291-296.	3.3	10
318	Exploring Highâ€Energy Liâ€I(r)on Batteries and Capacitors with Conversionâ€Type Fe ₃ O ₄ â€rGO as the Negative Electrode. ChemElectroChem, 2017, 4, 2626-2633.	1.7	10
319	Electrochemical deposition of highly porous reduced graphene oxide electrodes for Li-ion capacitors. Electrochimica Acta, 2020, 337, 135861.	2.6	10
320	Binary NaCla€"NaF and NaCla€"LiF Flux-Mediated Growth of Mixed-Valence (V ^{3+/4+}) NASICON-Type Na ₃ V ₂ (PO ₄) ₂ F _{2.5} O _{0.5} and Na _{2.4} Lissub>0.6V ₂ (PO ₄) ₂ 2C _{2.5} O _{0.5}	2.5 .5	10
321	Enhancing the polymer electrolytea€ U metal interface on high-voltage solid-state batteries with Li-based additives inspired by the surface chemistry of Li ₇ La ₃ Zr ₂ O ₁₂ . Journal of Materials Chemistry A, 2022, 10, 2352-2361.	5.2	10
322	Enhanced cycling stability of o-LiMnO2 cathode modified by lithium boron oxide coating for lithium-ion batteries. Journal of Solid State Electrochemistry, 2014, 18, 1915-1922.	1.2	9
323	Molten sodium-induced graphitization towards highly crystalline and hierarchical porous graphene frameworks. 2D Materials, 2015, 2, 035016.	2.0	8
324	Route of Irreversible Transformation in Layered Tin Thiophosphite and Enhanced Lithium Storage Performance. ACS Applied Energy Materials, 0, , .	2.5	8

#	Article	IF	CITATIONS
325	Directed magnetic field induced assembly of high magnetic moment cobalt nanowires. Applied Physics A: Materials Science and Processing, 2010, 98, 821-830.	1.1	7
326	A novel method to synthesize cobalt oxide (Co ₃ O ₄) nanowires from cobalt (Co) nanobowls. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 963-966.	0.8	7
327	Electrochemical Reactivity with Lithium of Spinel-type ZnFe _{2–<i>y</i>} Cr _{<i>y</i>} O ₄ (0 ≤i>y â‰⊉). Journal of Physical Chemistry C, 2013, 117, 24213-24223.	1.5	7
328	3D Interconnected Porous Graphene Sheets Loaded with Cobalt Oxide Nanoparticles for Lithiumâ€lon Battery Anodes. Energy Technology, 2016, 4, 816-822.	1.8	7
329	Systematic control of α-Fe2O3 crystal growth direction for improved electrochemical performance of lithium-ion battery anodes. Beilstein Journal of Nanotechnology, 2017, 8, 2032-2044.	1.5	7
330	Direct reuse of electronic plastic scraps from computer monitor and keyboard to direct stem cell growth and differentiation. Science of the Total Environment, 2022, 807, 151085.	3.9	7
331	Targeted removal of aluminium and copper in Li-ion battery waste solutions by selective precipitation as valuable porous materials. Materials Letters, 2020, 268, 127564.	1.3	6
332	Ultrafast Crystallization of Ordered Mesoporous Metal Oxides and Carbon from Block Copolymer Selfâ€Assembly and Joule Heating. Advanced Materials Interfaces, 2022, 9, .	1.9	6
333	Understanding of Boron Junction Stability in Preamorphized Silicon after Optimized Flash Annealing. Journal of the Electrochemical Society, 2008, 155, H508.	1.3	5
334	Synthesis and crystal chemical evolution of fresnoite powders. Journal of Solid State Chemistry, 2012, 187, 165-171.	1.4	5
335	Facile synthesis and electrochemical properties of alpha-phase ferric oxide hematite cocoons and rods as high-performance anodes for lithium-ion batteries. Journal of Materials Research, 2013, 28, 824-831.	1.2	5
336	Electrochemical Route to Alleviate Irreversible Capacity Loss from Conversion Type α-Fe ₂ O ₃ Anodes by LiVPO ₄ F Prelithiation. ACS Applied Energy Materials, 0, , .	2.5	5
337	A new insight into Li-staging, in-situ electrochemical exfoliation, and superior Li storage characteristics of highly crystalline few-layered graphene. Journal of Energy Storage, 2021, 41, 102908.	3.9	5
338	Modulating Anion Redox Activity of Li _{1.2} Mn _{0.54} Ni _{0.13} Co _{0.13} O ₂ through Strong Sr–O Bonds toward Achieving Stable Li-Ion Half-/Full-Cell Performance. ACS Applied Energy Materials 2021 4 11234-11247	2.5	5
339	Ex situ XAS investigation of effect of binders on electrochemical performance of Li ₂ Fe(SO ₄) ₂ cathode. Journal of Materials Chemistry A, 2017, 5, 19963-19971.	5.2	4
340	Unusual Liâ€Storage Behaviour of Twoâ€Dimensional ReS ₂ Single Crystals. Batteries and Supercaps, 2018, 1, 69-74.	2.4	4
341	Investigation of the Electrochemical and Thermal Stability of an Ionic Liquid Based Na _{0.6} Co _{0.1} Mn _{0.9} O ₂ /Na _{2.55} V ₆ O< Sodium-Ion Full-Cell. Journal of the Electrochemical Society, 2019, 166, A944-A952.	(sub)16<	/sab>
342	Electrochemical Performance of Bâ€Type Vanadium Dioxide as a Sodiumâ€ion Battery Cathode: A Combined	1.7	4

Experimental and Theoretical Study. ChemElectroChem, 2020, 7, 3151-3159.

#	Article	IF	CITATIONS
343	Anode Materials for Rechargeable Aqueous Alâ€lon Batteries: Progress and Prospects. ChemNanoMat, 2022, 8, .	1.5	4
344	Hot carrier transport in modulation doped Si/SiGe and Ge/SiGe heterostructures. Thin Solid Films, 2000, 369, 333-337.	0.8	3
345	Synthesis of Co/Co ₃ O ₄ Nanocomposite Particles Relevant to Magnetic Field Processing. Journal of Nanoscience and Nanotechnology, 2010, 10, 6580-6585.	0.9	3
346	Energy Storage: Oneâ€Pot Synthesis of Tunable Crystalline Ni ₃ S ₄ @Amorphous MoS ₂ Core/Shell Nanospheres for Highâ€Performance Supercapacitors (Small 30/2015). Small, 2015, 11, 3720-3720.	5.2	3
347	Structural, Thermal, and Electrochemical Studies of Novel Li ₂ Co _{<i>x</i>} Mn _{1–<i>x</i>} (SO ₄) ₂ Bimetallic Sulfates. Journal of Physical Chemistry C, 2017, 121, 24971-24978.	1.5	3
348	Nanofibers-NiCo2O4: Fabrication and Li-storage properties. , 2012, , .		2
349	Exploring two dimensional Co0.33In2.67S2.29Se1.71 as alloy type negative electrode for Li-ion battery with olivine LiFePO4 cathode. Materials Today Energy, 2018, 9, 19-26.	2.5	2
350	Electronic and Geometric Structures of Rechargeable Lithium Manganese Sulfate Li ₂ Mn(SO ₄) ₂ Cathode. ACS Omega, 2019, 4, 11338-11345.	1.6	2
351	Narsarsukite Na2TiOSi4O10 as a Low Voltage Silicate Anode for Rechargeable Li-Ion and Na-Ion Batteries. ACS Applied Energy Materials, 2019, 2, 2350-2355.	2.5	2
352	Olivine-Carbon Nanofibrous Cathodes for Lithium Ion Batteries. Materials Research Society Symposia Proceedings, 2010, 1266, 50201.	0.1	0
353	Selected Peer-Reviewed Themed Articles on Nanonets and Nanomaterials for Energy Harnessing and Storage Presented at International Conference for Materials for Advanced Technologies, Singapore (ICMAT 2011). Nanoscience and Nanotechnology Letters, 2012, 4, 701-702.	0.4	0
354	MLi ₂ Ti ₆ O ₁₄ (M = 2Na, Sr, Ba, Pb) Titanate Anodes for Lithium-Ion Capacitors (LICs). ECS Meeting Abstracts, 2020, MA2020-02, 641-641.	0.0	0