
Dariusz Grzesiak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/502752/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of Laser Spot Size, Scanning Strategy, Scanning Speed, and Laser Power on Microstructure and Mechanical Behavior of 316L Stainless Steel Fabricated via Selective Laser Melting. Journal of Materials Engineering and Performance, 2022, 31, 2205-2224.	2.5	26
2	Compressive deformation behavior and energy absorption characteristic of additively manufactured sheet CoCrMo triply periodic minimal surface lattices. Journal of Materials Research and Technology, 2022, 18, 171-184.	5.8	14
3	A New Approach for Manufacturing Stochastic Pure Magnesium Foam by Laser Powder Bed Fusion: Fabrication, Geometrical Characteristics, and Compressive Mechanical Properties. Advanced Engineering Materials, 2021, 23, 2100483.	3.5	7
4	Effect of energy density and scanning strategy on densification, microstructure and mechanical properties of 316L stainless steel processed via selective laser melting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 770, 138455.	5.6	157
5	Fracture Toughness of a Hot Work Tool Steel Fabricated by Laserâ€Powder Bed Fusion Additive Manufacturing. Steel Research International, 2020, 91, 1900449.	1.8	9
6	Effects of building direction and defect sensitivity on the fatigue behavior of additively manufactured H13 tool steel. Theoretical and Applied Fracture Mechanics, 2020, 108, 102634.	4.7	32
7	Effect of processing parameters on the microstructure and mechanical properties of Co–Cr–Mo alloy fabricated by selective laser melting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 792, 139456.	5.6	36
8	The role of the additive manufacturing process parameters in the shaping of the surface geometric structure during micro-milling. Journal of Machine Engineering, 2020, 20, 86-93.	1.8	1
9	Technical and Economic Implications of the Combination of Machining and Additive Manufacturing in the Production of Metal Parts on the Example of a Disc Type Element. Lecture Notes in Mechanical Engineering, 2020, , 128-137.	0.4	0
10	Novel TiB2-reinforced 316L stainless steel nanocomposites with excellent room- and high-temperature yield strength developed by additive manufacturing. Composites Part B: Engineering, 2019, 156, 51-63.	12.0	185
11	Selective laser melting of TiC reinforced stainless steel nanocomposites: Mechanical behaviour at elevated temperatures. Materials Letters, 2019, 256, 126633.	2.6	11
12	Superior Wear Resistance in EBM-Processed TC4 Alloy Compared with SLM and Forged Samples. Materials, 2019, 12, 782.	2.9	23
13	Heat treatment and properties of a hot work tool steel fabricated by additive manufacturing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 753, 109-121.	5.6	129
14	H13–partially stabilized zirconia nanocomposites fabricated by high-energy mechanical milling and selective laser melting. Materials and Design, 2018, 146, 286-297.	7.0	25
15	Thermal behavior of the molten pool, microstructural evolution, and tribological performance during selective laser melting of TiC/316L stainless steel nanocomposites: Experimental and simulation methods. Journal of Materials Processing Technology, 2018, 257, 288-301.	6.3	133
16	In situ formation of TiC-particle-reinforced stainless steel matrix nanocomposites during ball milling: Feedstock powder preparation for selective laser melting at various energy densities. Powder Technology, 2018, 326, 467-478.	4.2	89
17	Densification behavior, microstructural evolution, and mechanical properties of TiC/316L stainless steel nanocomposites fabricated by selective laser melting. Materials and Design, 2018, 138, 119-128.	7.0	182
18	Strengthening of stainless steel by titanium carbide addition and grain refinement during selective laser melting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 712, 812-818.	5.6	149

DARIUSZ GRZESIAK

#	Article	IF	CITATIONS
19	Topology Optimisation Aimed at Additive—SLM Manufacturing of Metal Parts of ExoArm 7-DOF. Lecture Notes in Mechanical Engineering, 2018, , 533-541.	0.4	2
20	Selective laser melting of TiB2/316L stainless steel composites: The roles of powder preparation and hot isostatic pressing post-treatment. Powder Technology, 2017, 309, 37-48.	4.2	134
21	Selective laser melting of TiB 2 /H13 steel nanocomposites: Influence of hot isostatic pressing post-treatment. Journal of Materials Processing Technology, 2017, 244, 344-353.	6.3	94
22	In-situ formation of novel TiC-particle-reinforced 316L stainless steel bulk-form composites by selective laser melting. Journal of Alloys and Compounds, 2017, 706, 409-418.	5.5	193
23	Selective laser melting of TiC/H13 steel bulk-form nanocomposites with variations in processing parameters. MRS Communications, 2017, 7, 84-89.	1.8	10
24	Scanning strategies for texture and anisotropy tailoring during selective laser melting of TiC/316L stainless steel nanocomposites. Journal of Alloys and Compounds, 2017, 728, 424-435.	5.5	190
25	Nanocrystalline TiC-reinforced H13 steel matrix nanocomposites fabricated by selective laser melting. Materials and Design, 2016, 96, 150-161.	7.0	149
26	Rapid fabrication of bulk-form TiB2/316L stainless steel nanocomposites with novel reinforcement architecture and improved performance by selective laser melting. Journal of Alloys and Compounds, 2016, 680, 480-493.	5.5	208
27	Selective laser melting of TiC reinforced 316L stainless steel matrix nanocomposites: Influence of starting TiC particle size and volume content. Materials and Design, 2016, 104, 141-151.	7.0	214
28	Selective Laser Melting of TiB2/H13 Steel Bulk Nanocomposites: Influence of Nanoscale Reinforcment. , 2016, , 171-176.		0
29	Technological Restrictions of Lightweight Lattice Structures Manufactured by Selective Laser Melting of Metals. Advances in Manufacturing Science and Technology, 2014, 38, 75-82.	0.3	2
30	Effect of milling time on thermal treatment of TiC, TiB2/steel powders. Journal of Thermal Analysis and Calorimetry, 2013, 113, 379-383.	3.6	10
31	Mechanical Properties of Metal Matrix Nanocomposites Synthesized by Selective Laser Melting Measured by Depth Sensing Indentation Technique. Key Engineering Materials, 2013, 586, 83-86.	0.4	4
32	Oxidation process of the steel/nc-TiC nanocomposites. Journal of Thermal Analysis and Calorimetry, 2012, 108, 979-983.	3.6	6
33	Application of thermal analysis in nanotechnology. Journal of Thermal Analysis and Calorimetry, 2010, 101, 701-706.	3.6	7
34	Microstructure and Tribocorrosion Properties of Titanium Matrix Nanocomposites Manufactured by Selective Laser Sintering/Melting Method. Solid State Phenomena, 0, 227, 247-250.	0.3	3
35	Selective Laser Melting of TiB ₂ /H13 Steel Bulk Nanocomposites: Influence of Nanoscale Reinforcment. , 0, , 167-176.		0