Wen-Xing Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/502668/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Small-diameter p-type SnS nanowire photodetectors and phototransistors with low-noise and high-performance. Nanotechnology, 2022, 33, 135707.	2.6	12
2	Phase-modulated single-photon nonreciprocal transport and directional router in a waveguide–cavity–emitter system beyond the chiral coupling. Quantum Science and Technology, 2022, 7, 015025.	5.8	16
3	Optical nonreciprocity and nonreciprocal photonic devices with directional four-wave mixing effect. Optics Express, 2022, 30, 6284.	3.4	11
4	Two-color second-order sideband generation via magnon Kerr nonlinearity in a cavity magnonical system. Journal of the Optical Society of America B: Optical Physics, 2022, 39, 1042.	2.1	4
5	Gain-type optomechanically induced absorption and precise mass sensor in a hybrid optomechanical system. Journal of Applied Physics, 2021, 129, 084504.	2.5	4
6	Controllable Goos–Hächen shift and optical switching in an Er3 + -doped yttrium aluminum garnet crystal. Laser Physics Letters, 2021, 18, 045205.	1.4	5
7	Enhancement of Upper Second-Order Sidebands Based on Optomechanically Induced Absorption in a Double-Cavity Optomechanical System. IEEE Photonics Journal, 2021, 13, 1-11.	2.0	1
8	Control of an electromagnetically induced grating by Er ³⁺ ion concentration in an Er ³⁺ -doped YAG crystal. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 2036.	2.1	5
9	Optical soliton in a one-dimensional array of a metal nanoparticle-microcavity complex. Communications in Theoretical Physics, 2021, 73, 115105.	2.5	0
10	High-detectivity tin disulfide nanowire photodetectors with manipulation of localized ferroelectric polarization field. Nanophotonics, 2021, 10, 4637-4644.	6.0	4
11	Tunable magnon antibunching in a hybrid ferromagnet-superconductor system with two qubits. Physical Review B, 2021, 104, .	3.2	25
12	Phase control of the transmission in cavity magnomechanical system with magnon driving. Journal of Applied Physics, 2020, 128, .	2.5	20
13	Ultrasensitive Sizing Sensor for a Single Nanoparticle in a Hybrid Nonlinear Microcavity. IEEE Photonics Journal, 2020, 12, 1-8.	2.0	14
14	One- and two-dimensional electromagnetically induced gratings in an Er3+ - doped yttrium aluminum garnet crystal. Scientific Reports, 2020, 10, 4019.	3.3	23
15	Force measurement in squeezed dissipative optomechanics in the presence of laser phase noise. Optics Express, 2020, 28, 12460.	3.4	5
16	High-precision three dimensional atom localization via multiphoton quantum destructive interference. Optics Express, 2020, 28, 25308.	3.4	2
17	Highly-precision sizing a single metal nanoparticle using a microcavity. Laser Physics Letters, 2020, 17, 126202.	1.4	0
18	Enhanced Kerr nonlinearity with a single quantum dot coupled to a gain cavity under weak-excitation limitation. Laser Physics Letters, 2019, 16, 025204.	1.4	1

#	Article	IF	CITATIONS
19	Realization of a highly sensitive mass sensor in a quadratically coupled optomechanical system. Physical Review A, 2019, 99, .	2.5	36
20	Squeezing-induced giant Goos-Hächen shift and hypersensitized displacement sensor in a two-level atomic system. Physical Review A, 2019, 99, .	2.5	20
21	Highly sensitive mass detection based on nonlinear sum-sideband in a dispersive optomechanical system. Optics Express, 2019, 27, 3909.	3.4	13
22	Perfectly asymmetric Raman-Nath diffraction in disordered atomic gratings. Optics Express, 2019, 27, 24693.	3.4	6
23	Lop-sided Raman–Nath diffraction in PT-antisymmetric atomic lattices. Optics Letters, 2019, 44, 2089.	3.3	33
24	High-precision two-dimensional atom localization from four-wave mixing in a double-ĥ four-level atomic system. Laser Physics, 2018, 28, 035201.	1.2	8
25	Asymmetric diffraction by atomic gratings with optical <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">PT symmetry in the Raman-Nath regime. Physical Review A, 2018. 97</mml:mi </mml:math 	2.5	54
26	Enhanced generation of charge-dependent second-order sideband and high-sensitivity charge sensors in a gain-cavity-assisted optomechanical system. Physical Review A, 2018, 98, .	2.5	31
27	Quadrature squeezing of a higher-order sideband spectrum in cavity optomechanics. Optics Letters, 2018, 43, 9.	3.3	43
28	Enhanced generation of higher-order sidebands in a single-quantum-dot–cavity system coupled to a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">PT</mml:mi </mml:math> -symmetric double cavity. Physical Review A, 2017, 96, .	2.5	34
29	Dynamic control of coherent pulses via destructive interference in graphene under Landau quantization. Scientific Reports, 2017, 7, 2513.	3.3	6
30	Tunable two-phonon higher-order sideband amplification in a quadratically coupled optomechanical system. Scientific Reports, 2017, 7, 17637.	3.3	21
31	Coherent control of the Goos-HÃ ¤ chen shift via Fano interference. Journal of Applied Physics, 2016, 119, 143101.	2.5	11
32	High-precision three-dimensional atom localization via three-wave mixing in V-type three-level atoms. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 3956-3961.	2.1	18
33	Effective hyper-Raman scattering via inhibiting electromagnetically induced transparency in monolayer graphene under an external magnetic field. Optics Letters, 2016, 41, 2891.	3.3	6
34	Coherent control of high-order-harmonic generation via tunable plasmonic bichromatic near fields in a metal nanoparticle. Physical Review A, 2016, 93, .	2.5	9
35	Three-dimensional atom localization from spatial interference in a double two-level atomic system. Physical Review A, 2016, 94, .	2.5	37
36	Dressed-state analysis of efficient three-dimensional atom localization in a ladder-type three-level atomic system. Laser Physics, 2016, 26, 075203.	1.2	5

#	Article	IF	CITATIONS
37	High-efficiency infrared four-wave mixing signal in monolayer graphene. Laser Physics, 2016, 26, 035401.	1.2	9
38	Effective terahertz signal detection via electromagnetically induced transparency in graphene. Journal of the Optical Society of America B: Optical Physics, 2016, 33, 279.	2.1	11
39	High-order harmonics in a quantum dot and metallic nanorod complex. Optics Letters, 2015, 40, 4903.	3.3	20
40	Two-dimensional atom localization via phase-sensitive absorption-gain spectra in five-level hyper inverted-Y atomic systems. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 1070.	2.1	22
41	Phase control of optical steady-state behaviors from Fano-type interference in triple-semiconductor quantum wells. Optik, 2015, 126, 2003-2008.	2.9	0
42	Diagnose human colonic tissues by terahertz near-field imaging. Journal of Biomedical Optics, 2015, 20, 036017.	2.6	22
43	Tunneling-induced giant Goos–Hächen shift in quantum wells. Optics Letters, 2015, 40, 3133.	3.3	51
44	Ultrafast optical switching in quantum dot-metallic nanoparticle hybrid systems. Optics Express, 2015, 23, 13032.	3.4	47
45	Giant enhanced four-wave mixing efficiency via two-photon resonance in asymmetric quantum wells. Laser Physics Letters, 2015, 12, 095202.	1.4	9
46	Generation of ultrashort extreme-ultraviolet pulses by enhanced plasmonic near-fields in metallic nanoparticles. Europhysics Letters, 2015, 111, 24005.	2.0	1
47	Lasing on surface states in vertical-cavity surface-emission lasers. Optics Letters, 2014, 39, 5582.	3.3	0
48	Enhanced four-wave mixing efficiency in four-subband semiconductor quantum wells via Fano-type interference. Optics Express, 2014, 22, 29179.	3.4	27
49	Tunneling-assisted optical information storage with lattice polariton solitons in cavity-QED arrays. Physical Review A, 2014, 89, .	2.5	18
50	Coherent Single-Electron Transfer in Coupled Semiconductor Quantum Dots Driven by a Few-Cycle Pulse. Communications in Theoretical Physics, 2014, 62, 277-282.	2.5	0
51	Carrier-envelope phase control electron transport in an asymmetric double quantum dot irradiated by a few-cycle pulse. Optics Communications, 2014, 328, 96-101.	2.1	6
52	Phase control of group velocity via Fano-type interference in a triple semiconductor quantum well. Optics Communications, 2014, 324, 221-226.	2.1	15
53	Ultrafast single-electron transfer in coupled quantum dots driven by a few-cycle chirped pulse. Journal of Applied Physics, 2014, 115, 143105.	2.5	17
54	Controllable optical steady behavior from nonradiative coherence in GaAs quantum well driven by a single elliptically polarized field. Modern Physics Letters B, 2014, 28, 1450117.	1.9	3

#	Article	IF	CITATIONS
55	Interference-induced enhancement of field entanglement in a microwave-driven V-type single-atom laser. Open Physics, 2014, 12, .	1.7	0
56	Phase control of light propagation via Fano interference in asymmetric double quantum wells. Journal of Applied Physics, 2014, 115, .	2.5	12
57	Phase knob for switching steady-state behaviors from bistability to multistability via spontaneously generated coherence. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 2061.	2.1	22
58	The visibility analysis of correlated imaging based on the coherent mode representation. Optik, 2014, 125, 3825-3828.	2.9	0
59	Carrier-Envelope-Phase Control of Single-Electron Transport in Coupled Quantum Dots. Chinese Physics Letters, 2013, 30, 114205.	3.3	0
60	Impact of Interacting Quantum Coherence via Decays and Incoherent Pumping on Transient and Steady-State Behaviors of Absorption. Communications in Theoretical Physics, 2012, 57, 677-680.	2.5	0
61	Coherent control of optical bistability in an open ĥ-type three-level atomic system. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 2891.	2.1	92
62	Noise analysis in ghost imaging from the perspective of coherent-mode representation. Chinese Physics B, 2012, 21, 044206.	1.4	8
63	Giant Kerr nonlinearity induced by interacting quantum coherences from decays and incoherent pumping. Chinese Physics B, 2012, 21, 114208.	1.4	3
64	Matched slow optical soliton pairs via biexciton coherence in quantum dots. Physical Review A, 2011, 84, .	2.5	135
65	Noise analysis in correlated imaging, quantum and classical. Optik, 2011, 122, 1791-1794.	2.9	1
66	Ghost diffraction, lensless system and 2-f system. Optik, 2011, 122, 451-454.	2.9	2
67	Continuous-Variable Entanglement Generation from a Four-State Atom under Raman Excitation. Communications in Theoretical Physics, 2011, 56, 1097-1104.	2.5	1
68	Probe Gain without Probe field in a V-type System with an External Field Coupling Two Upper Levels. Communications in Theoretical Physics, 2011, 55, 667-670.	2.5	0
69	One-Step Generation of Scalable Multiparticle Entanglement for Hot Ions Driven by a Standing-Wave Laser. Communications in Theoretical Physics, 2011, 56, 263-267.	2.5	1
70	Formation and propagation of ultraslow three-wave-vector optical solitons in a cold seven-level triple- <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mi>i></mml:mi></mml:mrow></mml:math> atomic system under Raman excitation. Physical Review A, 2010, 82, .	2.5	73
71	Controllable Kerr nonlinearity with vanishing absorption in a four-level inverted-Y atomic system. Optics Communications, 2010, 283, 5062-5066.	2.1	22
72	Modulated Terahertz Transmission through Sub-Wavelength Cu Grating by Liquid Water. Chinese Physics Letters, 2010, 27, 010701.	3.3	2

#	Article	IF	CITATIONS
73	Three coupled ultraslow temporal solitons in a five-level tripod atomic system. Physical Review A, 2010, 81, .	2.5	70
74	Noise properties in a two-arm microscope imaging system with classical thermal light. Applied Optics, 2010, 49, 4554.	2.1	5
75	Nonlinear localized modes in bandgap microcavities. Optics Letters, 2010, 35, 3207.	3.3	10
76	Highly efficient four-wave mixing via intersubband transitions in InGaAs/AlAs coupled double quantum well structures. Journal of Modern Optics, 2009, 56, 716-721.	1.3	22
77	TRANSIENT AND STEADY-STATE ABSORPTIONS OF A WEAK PROBE FIELD IN A COUPLED DOUBLE QUANTUM-WELL STRUCTURE. Modern Physics Letters B, 2009, 23, 2215-2227.	1.9	6
78	Next-nearest-neighbor-tunneling-induced symmetry breaking of Hofstadter's butterfly spectrum for ultracold atoms on the honeycomb lattice. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 2774-2777.	2.1	5
79	Giant Kerr nonlinearities and slow optical solitons in coupled double quantum-well nanostructure. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 374, 355-359.	2.1	50
80	Slow vector optical solitons in a cold four-level inverted-Y atomic system. European Physical Journal D, 2009, 55, 161-166.	1.3	24
81	Probe absorptions in an asymmetric double quantum well. Journal of Physics B: Atomic, Molecular and Optical Physics, 2009, 42, 225501.	1.5	6
82	Ultraslow temporal vector optical solitons in a cold four-level tripod atomic system. Journal of the Optical Society of America B: Optical Physics, 2009, 26, 478.	2.1	59
83	Slow vector optical solitons in a cold five-level hyper V-type atomic system. Optics Express, 2009, 17, 7771.	3.4	15
84	Carrier-envelope-phase dependent coherence in double quantum wells. Optics Express, 2009, 17, 15402.	3.4	27
85	Entanglement via atomic coherence induced by two strong classical fields. Physical Review A, 2009, 80, .	2.5	34
86	Massless Dirac fermions in a square optical lattice. Physical Review A, 2009, 79, .	2.5	57
87	Detuning management of optical solitons in coupled quantum wells. Physical Review A, 2009, 79, .	2.5	103
88	Efficient Scheme for One-Way Quantum Computing inÂThermal Cavities. International Journal of Theoretical Physics, 2008, 47, 2997-3004.	1.2	1
89	Polarization qubit phase gate in a coupled quantum-well nanostructure. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 7081-7085.	2.1	28
90	Controllable entanglement and polarization phase gate in coupled double quantum-well structures. Optics Express, 2008, 16, 17161.	3.4	27

#	Article	IF	CITATIONS
91	Slow optical solitons via intersubband transitions in a semiconductor quantum well. Europhysics Letters, 2008, 83, 14002.	2.0	37
92	ENCRYPTION AND DECRYPTION FOR QUANTUM SECRET SHARING PROTOCOL WITH HOT TRAPPED IONS. Modern Physics Letters B, 2008, 22, 1243-1249.	1.9	9
93	Ultraslow bright and dark solitons in semiconductor quantum wells. Physical Review A, 2008, 77, .	2.5	174
94	Practical scheme for quantum dense coding between three parties using microwave radiation in trapped ions. Journal of Physics B: Atomic, Molecular and Optical Physics, 2007, 40, 1245-1252.	1.5	17
95	Simple scheme for implementing the Deutsch–Jozsa algorithm in a thermal cavity. Journal of Physics A: Mathematical and Theoretical, 2007, 40, 155-161.	2.1	22
96	Transverse acoustic wave in molecular magnets via electromagnetically induced transparency. Physical Review B, 2007, 75, .	3.2	39
97	Avoided level-crossing, correlation and entanglement of two-component Bose–Einstein condensates in a double well. Journal of Physics B: Atomic, Molecular and Optical Physics, 2006, 39, 3097-3109.	1.5	5
98	Slow bistable solitons in a cold three-state medium. Journal of Physics B: Atomic, Molecular and Optical Physics, 2006, 39, 401-407.	1.5	11
99	PREPARATION AND STORAGE OF ENTANGLED STATES FOR MULTIPLE TRAPPED IONS IN THERMAL MOTION. Modern Physics Letters B, 2006, 20, 1507-1516.	1.9	3
100	SCHEME FOR DIRECT MEASURING QUASIPROBABILITY DISTRIBUTIONS OF N TRAPPED IONS IN THE DISPERSIVE REGIME. Modern Physics Letters B, 2006, 20, 1567-1573.	1.9	0
101	MULTI-COMPONENT SQUEEZED COHERENT STATE FOR N TRAPPED IONS IN ANY POSITION OF A STANDING WAVE. Modern Physics Letters B, 2005, 19, 729-735.	1.9	1
102	Efficient scheme for multipartite entanglement and quantum information processing with trapped ions. Physical Review A, 2005, 72, .	2.5	71
103	Efficient scheme for mesoscopic superpositions of motional coherent and squeezed coherent states ofNtrapped ions. Physical Review A, 2004, 70, .	2.5	22
104	Exact eigenstates for a class of models describing multiphoton processes in the presence of seven bosonic modes. Science in China Series G: Physics, Mechanics and Astronomy, 2004, 47, 649.	0.2	0
105	Topological Charge Measurement of the Mid-Infrared Vortex Beam via Spatially Dependent Four-Wave Mixing in an Asymmetric Semiconductor Double Quantum Well. Frontiers in Physics, 0, 10, .	2.1	3