Grégory Mouille

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5025956/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	One-step preparation procedure, mechanical properties and environmental performances of miscanthus-based concrete blocks. Materials Today Communications, 2022, 31, 103575.	0.9	0
2	The peptide SCOOP12 acts on reactive oxygen species homeostasis to modulate cell division and elongation in Arabidopsis primary root. Journal of Experimental Botany, 2022, 73, 6115-6132.	2.4	12
3	Overexpression of a Cytochrome P450 Monooxygenase Involved in Orobanchol Biosynthesis Increases Susceptibility to Fusarium Head Blight. Frontiers in Plant Science, 2021, 12, 662025.	1.7	6
4	Mutation of an arabidopsis golgi membrane protein ELMO1 reduces cell adhesion. Development (Cambridge), 2021, 148, .	1.2	5
5	Pectin Dependent Cell Adhesion Restored by a Mutant Microtubule Organizing Membrane Protein. Plants, 2021, 10, 690.	1.6	4
6	Effects of Arabidopsis wall associated kinase mutations on ESMERALDA1 and elicitor induced ROS. PLoS ONE, 2021, 16, e0251922.	1.1	10
7	The miR166–SIHB15A regulatory module controls ovule development and parthenocarpic fruit set under adverse temperatures in tomato. Molecular Plant, 2021, 14, 1185-1198.	3.9	39
8	Xyloglucan Remodeling Defines Auxin-Dependent Differential Tissue Expansion in Plants. International Journal of Molecular Sciences, 2021, 22, 9222.	1.8	9
9	Influence of chemical treatments of miscanthus stem fragments on polysaccharide release in the presence of cement and on the mechanical properties of bio-based concrete materials. Cement and Concrete Composites, 2020, 105, 103429.	4.6	31
10	CATION-CHLORIDE CO-TRANSPORTER 1 (CCC1) Mediates Plant Resistance against <i>Pseudomonas syringae</i> . Plant Physiology, 2020, 182, 1052-1065.	2.3	7
11	Thermal and dynamic mechanical characterization of miscanthus stem fragments: Effects of genotypes, positions along the stem and their relation with biochemical and structural characteristics. Industrial Crops and Products, 2020, 156, 112863.	2.5	5
12	Specialized phenolic compounds in seeds: structures, functions, and regulations. Plant Science, 2020, 296, 110471.	1.7	62
13	Quantification of guanosine triphosphate and tetraphosphate in plants and algae using stable isotope-labelled internal standards. Talanta, 2020, 219, 121261.	2.9	12
14	SYNERGISTIC ON AUXIN AND CYTOKININ 1 positively regulates growth and attenuates soil pathogen resistance. Nature Communications, 2020, 11, 2170.	5.8	34
15	The Proline-Rich Family Protein EXTENSIN33 Is Required for Etiolated Arabidopsis thaliana Hypocotyl Growth. Plant and Cell Physiology, 2020, 61, 1191-1203.	1.5	7
16	Oligogalacturonide production upon <i>Arabidopsis thaliana</i> – <i>Botrytis cinerea</i> interaction. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19743-19752.	3.3	100
17	Xyloglucans and Microtubules Synergistically Maintain Meristem Geometry and Phyllotaxis. Plant Physiology, 2019, 181, 1191-1206.	2.3	26
18	Arabidopsis thaliana plants lacking the ARP2/3 complex show defects in cell wall assembly and auxin distribution. Annals of Botany, 2018, 122, 777-789.	1.4	25

#	Article	IF	CITATIONS
19	The Auxin-Regulated CrRLK1L Kinase ERULUS Controls Cell Wall Composition during Root Hair Tip Growth. Current Biology, 2018, 28, 722-732.e6.	1.8	113
20	Guanosine tetraphosphate modulates salicylic acid signalling and the resistance of <i>Arabidopsis thaliana</i> to <i>Turnip mosaic virus</i> . Molecular Plant Pathology, 2018, 19, 634-646.	2.0	42
21	Validated Method for Strigolactone Quantification by Ultra Highâ€Performance Liquid Chromatography – Electrospray Ionisation Tandem Mass Spectrometry Using Novel Deuterium Labelled Standards. Phytochemical Analysis, 2018, 29, 59-68.	1.2	22
22	Combined enzymatic and metabolic analysis of grapevine cell responses to elicitors. Plant Physiology and Biochemistry, 2018, 123, 141-148.	2.8	20
23	The Tonoplastic Inositol Transporter INT1 From Arabidopsis thaliana Impacts Cell Elongation in a Sucrose-Dependent Way. Frontiers in Plant Science, 2018, 9, 1657.	1.7	15
24	Evidence for the Regulation of Gynoecium Morphogenesis by <i>ETTIN</i> via Cell Wall Dynamics. Plant Physiology, 2018, 178, 1222-1232.	2.3	25
25	EB1 contributes to microtubule bundling and organization, along with root growth, in <i>Arabidopsis thaliana</i> . Biology Open, 2018, 7, .	0.6	23
26	Clone-Dependent Expression of Esca Disease Revealed by Leaf Metabolite Analysis. Frontiers in Plant Science, 2018, 9, 1960.	1.7	15
27	Influence of the radial stem composition on the thermal behaviour of miscanthus and sorghum genotypes. Carbohydrate Polymers, 2017, 167, 12-19.	5.1	8
28	Downregulation of <scp>RWA</scp> genes in hybrid aspen affects xylan acetylation and wood saccharification. New Phytologist, 2017, 214, 1491-1505.	3.5	50
29	Pea Border Cell Maturation and Release Involve Complex Cell Wall Structural Dynamics. Plant Physiology, 2017, 174, 1051-1066.	2.3	38
30	Rice Sucrose Partitioning Mediated by a Putative Pectin Methyltransferase and Homogalacturonan Methylesterification. Plant Physiology, 2017, 174, 1595-1608.	2.3	25
31	An easier analysis of complex mixtures with highly resolved and sensitivity enhanced 2D quantitative NMR: application to tracking sugar phosphates in plants. Analytical Methods, 2017, 9, 2328-2333.	1.3	6
32	Parenchyma cell wall structure in twining stem of Dioscorea balcanica. Cellulose, 2017, 24, 4653-4669.	2.4	4
33	GDP-L-fucose is required for boundary definition in plants. Journal of Experimental Botany, 2017, 68, 5801-5811.	2.4	21
34	The Arabidopsis leucine-rich repeat receptor kinase MIK2/LRR-KISS connects cell wall integrity sensing, root growth and response to abiotic and biotic stresses. PLoS Genetics, 2017, 13, e1006832.	1.5	187
35	Cellular and Pectin Dynamics during Abscission Zone Development and Ripe Fruit Abscission of the Monocot Oil Palm. Frontiers in Plant Science, 2016, 7, 540.	1.7	32
36	Cell adhesion in plants is under the control of putative O-fucosyltransferases. Development (Cambridge), 2016, 143, 2536-40.	1.2	62

GRéGORY MOUILLE

#	Article	IF	CITATIONS
37	Mitochondrial Defects Confer Tolerance against Cellulose Deficiency. Plant Cell, 2016, 28, 2276-2290.	3.1	57
38	Expression of fungal acetyl xylan esterase in <i>Arabidopsis thaliana</i> improves saccharification of stem lignocellulose. Plant Biotechnology Journal, 2016, 14, 387-397.	4.1	72
39	Xyloglucan Metabolism Differentially Impacts the Cell Wall Characteristics of the Endosperm and Embryo during Arabidopsis Seed Germination. Plant Physiology, 2016, 170, 1367-1380.	2.3	41
40	Comparison between Coffea arabica L. †Laurina' and C. arabica †Bourbon' seedlings grown in daylight or darkness for their polysaccharidic cell wall composition and caffeine and chlorogenic acid contents. Trees - Structure and Function, 2016, 30, 665-674.	t 0.9	2
41	Cell adhesion in plants is under the control of putative O-fucosyltransferases. Journal of Cell Science, 2016, 129, e1.2-e1.2.	1.2	3
42	A SWI/SNF Chromatin Remodelling Protein Controls Cytokinin Production through the Regulation of Chromatin Architecture. PLoS ONE, 2015, 10, e0138276.	1.1	25
43	LACCASE5 Is Required for Lignification of the <i>Brachypodium distachyon</i> Culm. Plant Physiology, 2015, 168, 192-204.	2.3	71
44	Suppression of Dwarf and <i>irregular xylem</i> Phenotypes Generates Low-Acetylated Biomass Lines in Arabidopsis. Plant Physiology, 2015, 168, 452-463.	2.3	27
45	Arabidopsis leucine-rich repeat extensin (LRX) proteins modify cell wall composition and influence plant growth. BMC Plant Biology, 2015, 15, 155.	1.6	109
46	Disruption of the Sugar Transporters AtSWEET11 and AtSWEET12 Affects Vascular Development and Freezing Tolerance in Arabidopsis. Molecular Plant, 2015, 8, 1687-1690.	3.9	121
47	Variations in cell wall monosaccharide composition during seed development in Coffea arabica L. Comparison between Coffea arabica var. Bourbon and Coffea arabica var. Laurina. Trees - Structure and Function, 2015, 29, 1871-1881.	0.9	2
48	Assessing the Metabolic Impact of Nitrogen Availability Using a Compartmentalized Maize Leaf Genome-Scale Model Â. Plant Physiology, 2014, 166, 1659-1674.	2.3	80
49	Arabidopsis PECTIN METHYLESTERASE17 is co-expressed with and processed by SBT3.5, a subtilisin-like serine protease. Annals of Botany, 2014, 114, 1161-1175.	1.4	79
50	Arabinogalactan Glycosyltransferases Target to a Unique Subcellular Compartment That May Function in Unconventional Secretion in Plants. Traffic, 2014, 15, 1219-1234.	1.3	41
51	Proline-rich protein-like PRPL1 controls elongation of root hairs in Arabidopsis thaliana. Journal of Experimental Botany, 2014, 65, 5485-5495.	2.4	37
52	Scavenging Iron: A Novel Mechanism of Plant Immunity Activation by Microbial Siderophores Â. Plant Physiology, 2014, 164, 2167-2183.	2.3	94
53	AUXIN BINDING PROTEIN1 Links Cell Wall Remodeling, Auxin Signaling, and Cell Expansion in <i>Arabidopsis</i> Â. Plant Cell, 2014, 26, 280-295.	3.1	71
54	<i>^γ</i> â€Aminobutyric acid transaminase deficiency impairs central carbon metabolism and leads to cell wall defects during salt stress in <i><scp>A</scp>rabidopsis</i> roots. Plant, Cell and Environment, 2013, 36, 1009-1018.	2.8	109

GRéGORY MOUILLE

#	Article	IF	CITATIONS
55	A galactosyltransferase acting on arabinogalactan protein glycans is essential for embryo development in <scp>A</scp> rabidopsis. Plant Journal, 2013, 76, 128-137.	2.8	80
56	<i>Trans</i> -Golgi Network Localized ECHIDNA/Ypt Interacting Protein Complex Is Required for the Secretion of Cell Wall Polysaccharides in <i>Arabidopsis</i> Â Â Â. Plant Cell, 2013, 25, 2633-2646.	3.1	111
57	Plant Cell Wall Homeostasis Is Mediated by Brassinosteroid Feedback Signaling. Current Biology, 2012, 22, 1732-1737.	1.8	201
58	Biosynthesis and incorporation of side hainâ€ŧruncated lignin monomers to reduce lignin polymerization and enhance saccharification. Plant Biotechnology Journal, 2012, 10, 609-620.	4.1	140
59	Cell Expansion-Mediated Organ Growth Is Affected by Mutations in Three EXIGUA Genes. PLoS ONE, 2012, 7, e36500.	1.1	28
60	ESKIMO1 Disruption in Arabidopsis Alters Vascular Tissue and Impairs Water Transport. PLoS ONE, 2011, 6, e16645.	1.1	80
61	Identification of pectin methylesterase 3 as a basic pectin methylesterase isoform involved in adventitious rooting in <i>Arabidopsis thaliana</i> . New Phytologist, 2011, 192, 114-126.	3.5	67
62	PIN Polarity Maintenance by the Cell Wall in Arabidopsis. Current Biology, 2011, 21, 338-343.	1.8	336
63	Phytochrome Regulation of Cellulose Synthesis in Arabidopsis. Current Biology, 2011, 21, 1822-1827.	1.8	87
64	The transcription factor BELLRINGER modulates phyllotaxis by regulating the expression of a pectin methylesterase in <i>Arabidopsis</i> . Development (Cambridge), 2011, 138, 4733-4741.	1.2	68
65	A role for pectin deâ€methylesterification in a developmentally regulated growth acceleration in darkâ€grown Arabidopsis hypocotyls. New Phytologist, 2010, 188, 726-739.	3.5	147
66	High nitrogen fertilization and stem leaning have overlapping effects on wood formation in poplar but invoke largely distinct molecular pathways. Tree Physiology, 2010, 30, 1273-1289.	1.4	52
67	Abscisic Acid Deficiency Causes Changes in Cuticle Permeability and Pectin Composition That Influence Tomato Resistance to <i>Botrytis</i> Á <i>cinerea</i> Â Â Â Â Â. Plant Physiology, 2010, 154, 847-860.	2.3	140
68	Pectin May Hinder the Unfolding of Xyloglucan Chains during Cell Deformation: Implications of the Mechanical Performance of Arabidopsis Hypocotyls with Pectin Alterations. Molecular Plant, 2009, 2, 990-999.	3.9	48
69	Homogalacturonan Methyl-Esterification and Plant Development. Molecular Plant, 2009, 2, 851-860.	3.9	365
70	Reduced Number of Homogalacturonan Domains in Pectins of an Arabidopsis Mutant Enhances the Flexibility of the Polymer. Biomacromolecules, 2008, 9, 1454-1460.	2.6	61
71	Arabidopsis <i>XXT5</i> gene encodes a putative αâ€1,6â€xylosyltransferase that is involved in xyloglucan biosynthesis. Plant Journal, 2008, 56, 101-115.	2.8	109
72	Arabidopsis Phyllotaxis Is Controlled by the Methyl-Esterification Status of Cell-Wall Pectins. Current Biology, 2008, 18, 1943-1948.	1.8	302

GRéGORY MOUILLE

#	Article	IF	CITATIONS
73	A Naturally Occurring Mutation in an <i>Arabidopsis</i> Accession Affects a β- <scp>d</scp> -Galactosidase That Increases the Hydrophilic Potential of Rhamnogalacturonan I in Seed Mucilage. Plant Cell, 2008, 19, 3990-4006.	3.1	123
74	Purification, Cloning and Functional Characterization of an Endogenous beta-Glucuronidase in Arabidopsis thaliana. Plant and Cell Physiology, 2008, 49, 1331-1341.	1.5	46
75	The Transcription Factor WIN1/SHN1 Regulates Cutin Biosynthesis in Arabidopsis thaliana. Plant Cell, 2007, 19, 1278-1294.	3.1	266
76	Homogalacturonan synthesis in Arabidopsis thaliana requires a Golgi-localized protein with a putative methyltransferase domain. Plant Journal, 2007, 50, 605-614.	2.8	204
77	Quantitative Trait Loci Analysis of Primary Cell Wall Composition in Arabidopsis. Plant Physiology, 2006, 141, 1035-1044.	2.3	39
78	Mutants in DEFECTIVE GLYCOSYLATION, an Arabidopsis homolog of an oligosaccharyltransferase complex subunit, show protein underglycosylation and defects in cell differentiation and growth. Plant Journal, 2005, 42, 455-468.	2.8	81
79	CINNAMYL ALCOHOL DEHYDROGENASE-C and -D Are the Primary Genes Involved in Lignin Biosynthesis in the Floral Stem of Arabidopsis. Plant Cell, 2005, 17, 2059-2076.	3.1	346
80	The mechanism and regulation of cellulose synthesis in primary walls: lessons from cellulose-deficient Arabidopsis mutants. Cellulose, 2004, 11, 351-364.	2.4	72
81	Classification and identification ofArabidopsiscell wall mutants using Fourier-Transform InfraRed (FT-IR) microspectroscopy. Plant Journal, 2003, 35, 393-404.	2.8	247
82	QUASIMODO1 Encodes a Putative Membrane-Bound Glycosyltransferase Required for Normal Pectin Synthesis and Cell Adhesion in Arabidopsis. Plant Cell, 2002, 14, 2577-2590.	3.1	331
83	Two Loci Control Phytoglycogen Production in the Monocellular Green Alga Chlamydomonas reinhardtii. Plant Physiology, 2001, 125, 1710-1722.	2.3	45
84	Biochemical Characterization of Wild-Type and Mutant Isoamylases of Chlamydomonas reinhardtii Supports a Function of the Multimeric Enzyme Organization in Amylopectin Maturation. Plant Physiology, 2001, 125, 1723-1731.	2.3	54
85	PROCUSTE1 Encodes a Cellulose Synthase Required for Normal Cell Elongation Specifically in Roots and Dark-Grown Hypocotyls of Arabidopsis. Plant Cell, 2000, 12, 2409-2423.	3.1	530
86	The debranching enzyme complex missing in glycogen accumulating mutants of Chlamydomonas reinhardtii displays an isoamylase-type specificity. Plant Science, 2000, 157, 145-156.	1.7	27
87	Genetic and Biochemical Evidence for the Involvement of α-1,4 Clucanotransferases in Amylopectin Synthesis1. Plant Physiology, 1999, 120, 993-1004.	2.3	97
88	The Localization and Expression of the Class II Starch Synthases of Wheat1. Plant Physiology, 1999, 120, 1147-1156.	2.3	96
89	Novel, Starch-Like Polysaccharides Are Synthesized by an Unbound Form of Granule-Bound Starch Synthase in Glycogen-Accumulating Mutants ofChlamydomonas reinhardtii. Plant Physiology, 1999, 119, 321-330.	2.3	73
90	Biochemical Characterization of the Chlamydomonas reinhardtii α-1,4 Glucanotransferase Supports a Direct Function in Amylopectin Biosynthesis1. Plant Physiology, 1999, 120, 1005-1014.	2.3	80

#	Article	IF	CITATIONS
91	From Glycogen to Amylopectin: A Model for the Biogenesis of the Plant Starch Granule. Cell, 1996, 86, 349-352.	13.5	445
92	Preamylopectin Processing: A Mandatory Step for Starch Biosynthesis in Plants. Plant Cell, 1996, 8, 1353.	3.1	100
93	Storage, Photosynthesis, and Growth: The Conditional Nature of Mutations Affecting Starch Synthesis and Structure in Chlamydomonas. Plant Cell, 1995, 7, 1117.	3.1	38