
LluÃ-s Raich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5025890/publications.pdf Version: 2024-02-01

LILIÃS RAICH

#	Article	lF	CITATIONS
1	Molecular mechanism of inhibiting the SARS-CoV-2 cell entry facilitator TMPRSS2 with camostat and nafamostat. Chemical Science, 2021, 12, 983-992.	7.4	66
2	Discovery of a hidden transient state in all bromodomain families. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	24
3	Synergistic inhibition of SARS-CoV-2 cell entry by otamixaban and covalent protease inhibitors: pre-clinical assessment of pharmacological and molecular properties. Chemical Science, 2021, 12, 12600-12609.	7.4	11
4	Camostat mesylate inhibits SARS-CoV-2 activation by TMPRSS2-related proteases and its metabolite GBPA exerts antiviral activity. EBioMedicine, 2021, 65, 103255.	6.1	256
5	Alpha 1 Antitrypsin is an Inhibitor of the SARS-CoV-2–Priming Protease TMPRSS2. Pathogens and Immunity, 2021, 6, 55-74.	3.1	73
6	A Single Point Mutation Converts GH84 <i>O</i> -GlcNAc Hydrolases into Phosphorylases: Experimental and Theoretical Evidence. Journal of the American Chemical Society, 2020, 142, 2120-2124.	13.7	25
7	An Epoxide Intermediate in Glycosidase Catalysis. ACS Central Science, 2020, 6, 760-770.	11.3	34
8	α- <scp>d</scp> -Gal-cyclophellitol cyclosulfamidate is a Michaelis complex analog that stabilizes therapeutic lysosomal α-galactosidase A in Fabry disease. Chemical Science, 2019, 10, 9233-9243.	7.4	11
9	Modeling catalytic reaction mechanisms in glycoside hydrolases. Current Opinion in Chemical Biology, 2019, 53, 183-191.	6.1	26
10	Dynamic and Functional Profiling of Xylan-Degrading Enzymes in <i>Aspergillus</i> Secretomes Using Activity-Based Probes. ACS Central Science, 2019, 5, 1067-1078.	11.3	34
11	The Molecular Mechanism of Substrate Recognition and Catalysis of the Membrane Acyltransferase PatA from Mycobacteria. ACS Chemical Biology, 2018, 13, 131-140.	3.4	10
12	Palladium-mediated enzyme activation suggests multiphase initiation of glycogenesis. Nature, 2018, 563, 235-240.	27.8	42
13	Molecular-Scale Ligand Effects in Small Gold–Thiolate Nanoclusters. Journal of the American Chemical Society, 2018, 140, 15430-15436.	13.7	90
14	Structural and Mechanistic Insights into the Catalytic-Domain-Mediated Short-Range Glycosylation Preferences of GalNAc-T4. ACS Central Science, 2018, 4, 1274-1290.	11.3	35
15	The molecular mechanism of the ligand exchange reaction of an antibody against a glutathione-coated gold cluster. Nanoscale, 2017, 9, 3121-3127.	5.6	15
16	Conformational Analysis of the Mannosidase Inhibitor Kifunensine: A Quantum Mechanical and Structural Approach. ChemBioChem, 2017, 18, 1496-1501.	2.6	12
17	Carba-cyclophellitols Are Neutral Retaining-Glucosidase Inhibitors. Journal of the American Chemical Society, 2017, 139, 6534-6537.	13.7	24
18	Contribution of Shape and Charge to the Inhibition of a Family GH99 <i>endo</i> -α-1,2-Mannanase. Journal of the American Chemical Society, 2017, 139, 1089-1097.	13.7	17

LluÃs Raich

#	Article	IF	CITATIONS
19	Precise Probing of Residue Roles by Post-Translational β,γ-C,N Aza-Michael Mutagenesis in Enzyme Active Sites. ACS Central Science, 2017, 3, 1168-1173.	11.3	30
20	1,6-Cyclophellitol Cyclosulfates: A New Class of Irreversible Glycosidase Inhibitor. ACS Central Science, 2017, 3, 784-793.	11.3	43
21	Selective Derivatization of <i>N</i> -Terminal Cysteines Using Cyclopentenediones. Organic Letters, 2016, 18, 4836-4839.	4.6	10
22	A β-Mannanase with a Lysozyme-like Fold and a Novel Molecular Catalytic Mechanism. ACS Central Science, 2016, 2, 896-903.	11.3	39
23	A Trapped Covalent Intermediate of a Glycoside Hydrolase on the Pathway to Transglycosylation. Insights from Experiments and Quantum Mechanics/Molecular Mechanics Simulations. Journal of the American Chemical Society, 2016, 138, 3325-3332.	13.7	47
24	The complete conformational free energy landscape of β-xylose reveals a two-fold catalytic itinerary for β-xylanases. Chemical Science, 2015, 6, 1167-1177.	7.4	44