Jiangsheng Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/502584/publications.pdf Version: 2024-02-01

IMNOSHENC YU

#	Article	IF	CITATIONS
1	Intermolecular interaction induced spontaneous aggregation enables over 14% efficiency as-cast nonfullerene solar cells. Chemical Engineering Journal, 2022, 427, 131942.	12.7	7
2	Low structure order acceptor as third component enables high-performance semitransparent organic solar cells. Chemical Engineering Journal, 2022, 428, 132640.	12.7	8
3	Chlorinated unfused acceptor enabling 13.57% efficiency and 73.39% fill factor organic solar cells via fine-tuning alkoxyl chains on benzene core. Chemical Engineering Journal, 2022, 427, 131828.	12.7	29
4	Copper phosphotungstate as low cost, solution-processed, stable inorganic anode interfacial material enables organic photovoltaics with over 18% efficiency. Nano Energy, 2022, 94, 106923.	16.0	20
5	<i>In situ</i> and <i>ex situ</i> investigations on ternary strategy and co-solvent effects towards high-efficiency organic solar cells. Energy and Environmental Science, 2022, 15, 2479-2488.	30.8	84
6	High-Efficiency Ternary Organic Solar Cells with a Good Figure-of-Merit Enabled by Two Low-Cost Donor Polymers. ACS Energy Letters, 2022, 7, 2547-2556.	17.4	109
7	Aperiodic band-pass electrode enables record-performance transparent organic photovoltaics. Joule, 2022, 6, 1918-1930.	24.0	38
8	A low temperature processable tin oxide interlayer via amine-modification for efficient and stable organic solar cells. Journal of Energy Chemistry, 2021, 56, 496-503.	12.9	25
9	An unfused-ring acceptor with high side-chain economy enabling 11.17% as-cast organic solar cells. Materials Horizons, 2021, 8, 1008-1016.	12.2	36
10	14.55% efficiency PBDB-T ternary organic solar cells enabled by two alloy-forming acceptors featuring distinct structural orders. Chemical Engineering Journal, 2021, 413, 127444.	12.7	12
11	A Simple Dithieno[3,2â€b:2′,3′â€d]pyrrolâ€Rhodanine Molecular Third Component Enables Over 16.7% Efficiency and Stable Organic Solar Cells. Small, 2021, 17, e2007746.	10.0	22
12	Asymmetric simple unfused acceptor enabling over 12% efficiency organic solar cells. Chemical Engineering Journal, 2021, 412, 128770.	12.7	45
13	High mobility acceptor as third component enabling high-performance large area and thick active layer ternary solar cells. Chemical Engineering Journal, 2021, 418, 129539.	12.7	18
14	Revealing the photo-degradation mechanism of PM6:Y6 based high-efficiency organic solar cells. Journal of Materials Chemistry C, 2021, 9, 13972-13980.	5.5	28
15	Highly efficient organic solar cells enabled by a porous ZnO/PEIE electron transport layer with enhanced light trapping. Science China Materials, 2021, 64, 808-819.	6.3	12
16	High-performance bifacial semitransparent organic photovoltaics featuring a decently transparent TeO ₂ /Ag electrode. Materials Chemistry Frontiers, 2021, 5, 8197-8205.	5.9	4
17	Unfused Nonfullerene Acceptors Based on Simple Dipolar Merocyanines. Chemistry - A European Journal, 2021, 27, 18103-18108.	3.3	4
18	An asymmetric acceptor enabling 77.51% fill factor in organic solar cells. Science Bulletin, 2020, 65, 1876-1879.	9.0	11

JIANGSHENG YU

#	Article	IF	CITATIONS
19	2D Sideâ€Chain Engineered Asymmetric Acceptors Enabling Over 14% Efficiency and 75% Fill Factor Stable Organic Solar Cells. Advanced Functional Materials, 2020, 30, 2006141.	14.9	40
20	Over 15.5% efficiency organic solar cells with triple sidechain engineered ITIC. Science Bulletin, 2020, 65, 1533-1536.	9.0	30
21	Charge density modulation on asymmetric fused-ring acceptors for high-efficiency photovoltaic solar cells. Materials Chemistry Frontiers, 2020, 4, 1747-1755.	5.9	15
22	Molecular engineering of acceptors to control aggregation for optimized nonfullerene solar cells. Journal of Materials Chemistry A, 2020, 8, 5458-5466.	10.3	45
23	13.76% efficiency nonfullerene solar cells enabled by selenophene integrated dithieno[3,2- <i>b</i> :2′,3′- <i>d</i>]pyrrole asymmetric acceptors. Materials Chemistry Frontiers, 2020, 4, 924-932.	5.9	18
24	Modification on the Indacenodithieno[3,2- <i>b</i>]thiophene Core to Achieve Higher Current and Reduced Energy Loss for Nonfullerene Solar Cells. Chemistry of Materials, 2020, 32, 1297-1307.	6.7	46
25	Over 15% Efficiency in Ternary Organic Solar Cells by Enhanced Charge Transport and Reduced Energy Loss. ACS Applied Materials & Interfaces, 2020, 12, 21633-21640.	8.0	26
26	Retarding the Crystallization of a Nonfullerene Electron Acceptor for Highâ€Performance Polymer Solar Cells. Advanced Functional Materials, 2019, 29, 1807662.	14.9	57
27	Tuning of the conformation of asymmetric nonfullerene acceptors for efficient organic solar cells. Journal of Materials Chemistry A, 2019, 7, 22279-22286.	10.3	67
28	Molecular Orientation Unified Nonfullerene Acceptor Enabling 14% Efficiency As ast Organic Solar Cells. Advanced Functional Materials, 2019, 29, 1903269.	14.9	56
29	Enhancing phase separation with a conformation-locked nonfullerene acceptor for over 14.4% efficiency solar cells. Journal of Materials Chemistry C, 2019, 7, 13279-13286.	5.5	20
30	Nonacyclic carbazole-based non-fullerene acceptors enable over 12% efficiency with enhanced stability for organic solar cells. Journal of Materials Chemistry A, 2019, 7, 21903-21910.	10.3	26
31	Molecular engineering of central fused-ring cores of non-fullerene acceptors for high-efficiency organic solar cells. Journal of Materials Chemistry A, 2019, 7, 4313-4333.	10.3	122
32	Regulating the morphology of fluorinated non-fullerene acceptor and polymer donor via binary solvent mixture for high efficiency polymer solar cells. Science China Chemistry, 2019, 62, 1221-1229.	8.2	32
33	Side chain engineering on dithieno[3,2- <i>b</i> :2,3- <i>d</i>]pyrrol fused electron acceptors for efficient organic solar cells. Materials Chemistry Frontiers, 2019, 3, 702-708.	5.9	24
34	Nonfullerene Acceptor for Organic Solar Cells with Chlorination on Dithieno[3,2- <i>b</i> :2′,3′- <i>d</i>]pyrrol Fused-Ring. ACS Energy Letters, 2019, 4, 763-770.	17.4	102
35	Conformation Locking on Fusedâ€Ring Electron Acceptor for Highâ€Performance Nonfullerene Organic Solar Cells. Advanced Functional Materials, 2018, 28, 1705095.	14.9	120
36	A New Hole Transport Material for Efficient Perovskite Solar Cells With Reduced Device Cost. Solar Rrl, 2018, 2, 1700175.	5.8	31

JIANGSHENG YU

#	Article	IF	CITATIONS
37	High performance non-fullerene polymer solar cells based on PTB7-Th as the electron donor with 10.42% efficiency. Journal of Materials Chemistry A, 2018, 6, 2549-2554.	10.3	73
38	Dithieno[3,2â€ <i>b</i> :2′,3′â€ <i>d</i>]pyrrol Fused Nonfullerene Acceptors Enabling Over 13% Efficiency Organic Solar Cells. Advanced Materials, 2018, 30, e1707150.	for 21.0	373
39	Ternary nonfullerene polymer solar cells with efficiency >13.7% by integrating the advantages of the materials and two binary cells. Energy and Environmental Science, 2018, 11, 2134-2141.	30.8	223
40	Cost-effective hole transporting material for stable and efficient perovskite solar cells with fill factors up to 82%. Journal of Materials Chemistry A, 2017, 5, 23319-23327.	10.3	40
41	Boosting performance of inverted organic solar cells by using a planar coronene based electron-transporting layer. Nano Energy, 2017, 39, 454-460.	16.0	39
42	A Roomâ€Temperature Processable PDIâ€Based Electronâ€Transporting Layer for Enhanced Performance in PDIâ€Based Nonâ€Fullerene Solar Cells. Advanced Materials Interfaces, 2016, 3, 1600476.	3.7	27
43	Side-chain Engineering of Benzo[1,2-b:4,5-b']dithiophene Core-structured Small Molecules for High-Performance Organic Solar Cells. Scientific Reports, 2016, 6, 25355.	3.3	18
44	Selenium-substituted polymers for improved photovoltaic performance. Physical Chemistry Chemical Physics, 2016, 18, 7978-7986.	2.8	16
45	Side-chain manipulation on accepting units of two-dimensional benzo[1,2- <i>b</i> :4,5- <i>b′]dithiophene polymers for organic photovoltaics. Polymer Chemistry, 2016, 7, 1486-1493.</i>	3.9	15
46	Correlation of structure and photovoltaic performance of benzo[1,2-b:4,5-b′]dithiophene copolymers alternating with different acceptors. New Journal of Chemistry, 2015, 39, 2248-2255.	2.8	19
47	Doping a D-A structural polymer based on benzodithiophene and triazoloquinoxaline for efficiency improvement of ternary solar cells. Electronic Materials Letters, 2015, 11, 236-240.	2.2	8
48	A versatile strategy to directly synthesize 4,8-functionalized benzo[1,2-b:4,5-b′]difurans for organic electronics. Journal of Materials Chemistry A, 2015, 3, 1920-1924.	10.3	20
49	Triisopropylsilylethynyl substituted benzodithiophene copolymers: synthesis, properties and photovoltaic characterization. Journal of Materials Chemistry C, 2015, 3, 1595-1603.	5.5	17
50	Tuning nanoscale morphology using mixed solvents and solvent vapor treatment for high performance polymer solar cells. RSC Advances, 2014, 4, 48724-48733.	3.6	29
51	Direct access to 4,8-functionalized benzo[1,2-b:4,5-bâ€2]dithiophenes with deep low-lying HOMO levels and high mobilities. Journal of Materials Chemistry A, 2014, 2, 13580-13586.	10.3	33
52	Naphthodifuran alternating quinoxaline copolymers with a bandgap of â^¼1.2 eV and their photovoltaic characterization. New Journal of Chemistry, 2014, 38, 4816-4822.	2.8	24
53	Benzotrithiophene polymers with tuneable bandgap for photovoltaic applications. RSC Advances, 2014, 4, 53939-53945.	3.6	10
54	Unsupervised text pattern learning using minimum description length. , 2010, , .		1