
Andrea M Cooper

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/502575/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Balance between Protection and Pathogenic Response to Aerosol Challenge with Mycobacterium tuberculosis (Mtb) in Mice Vaccinated with TriFu64, a Fusion Consisting of Three Mtb Antigens. Vaccines, 2021, 9, 519.	2.1	4
2	Editorial: Mycobacterial Glycolipids—Role in Immunomodulation and Targets for Vaccine Development. Frontiers in Immunology, 2020, 11, 603900.	2.2	1
3	CD25-Targeted IL-2 Signals Promote Improved Outcomes of Influenza Infection and Boost Memory CD4 T Cell Formation. Journal of Immunology, 2020, 204, 3307-3314.	0.4	10
4	Memory CD4 T cell-derived IL-2 synergizes with viral infection to exacerbate lung inflammation. PLoS Pathogens, 2019, 15, e1007989.	2.1	32
5	Lipoarabinomannan in Active and Passive Protection Against Tuberculosis. Frontiers in Immunology, 2019, 10, 1968.	2.2	30
6	Immunological roulette: Luck or something more? Considering the connections between host and environment in TB. Cellular and Molecular Immunology, 2018, 15, 226-232.	4.8	3
7	Defining the Kinetics, Phenotype, and Function of T Cells Induced by <i>Mycobacterium tuberculosis</i> : Pillar of Immunity to Tuberculosis. Journal of Immunology, 2017, 199, 831-832.	0.4	2
8	Innate IFN-γ–Producing Cells Developing in the Absence of IL-2 Receptor Common γ-Chain. Journal of Immunology, 2017, 199, 1429-1439.	0.4	9
9	Cytokines and Chemokines inMycobacterium tuberculosisInfection. , 2017, , 33-72.		10
10	Cytokines and Chemokines in <i>Mycobacterium tuberculosis</i> Infection. Microbiology Spectrum, 2016, 4, .	1.2	309
11	Infection with Mycobacterium tuberculosis induces the Warburg effect in mouse lungs. Scientific Reports, 2016, 5, 18176.	1.6	204
12	IL-17A Promotes Intracellular Growth of Mycobacterium by Inhibiting Apoptosis of Infected Macrophages. Frontiers in Immunology, 2015, 6, 498.	2.2	28
13	The onset of adaptive immunity in the mouse model of tuberculosis and the factors that compromise its expression. Immunological Reviews, 2015, 264, 46-59.	2.8	35
14	Impairment of immunity to <i>Candida</i> and <i>Mycobacterium</i> in humans with bi-allelic <i>RORC</i> mutations. Science, 2015, 349, 606-613.	6.0	366
15	IL-12 and IL-23 cytokines: from discovery to targeted therapies for immune-mediated inflammatory diseases. Nature Medicine, 2015, 21, 719-729.	15.2	658
16	IL12Rβ1ΔTM Is a Secreted Product of <i>il12rb1</i> That Promotes Control of Extrapulmonary Tuberculosis. Infection and Immunity, 2015, 83, 560-571.	1.0	6
17	THEMIS Is Required for Pathogenesis of Cerebral Malaria and Protection against Pulmonary Tuberculosis. Infection and Immunity, 2015, 83, 759-768.	1.0	26
18	Interleukin 27R regulates CD4+ T cell phenotype and impacts protective immunity during <i>Mycobacterium tuberculosis</i> infection. Journal of Experimental Medicine, 2015, 212, 1449-1463.	4.2	66

#	Article	IF	CITATIONS
19	The balance between protective and pathogenic immune responses in the TB-infected lung. Nature Immunology, 2015, 16, 57-63.	7.0	229
20	Lymphotoxin beta receptor signaling limits mucosal damage through driving IL-23 production by epithelial cells. Mucosal Immunology, 2015, 8, 403-413.	2.7	61
21	BCG vaccination-induced long-lasting control of Mycobacterium tuberculosis correlates with the accumulation of a novel population of CD4+IL-17+TNF+IL-2+ T cells. Vaccine, 2015, 33, 85-91.	1.7	42
22	Mouse Model of Tuberculosis. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a018556-a018556.	2.9	51
23	TNFα and IFNÎ ³ but Not Perforin Are Critical for CD8 T Cell-Mediated Protection against Pulmonary Yersinia pestis Infection. PLoS Pathogens, 2014, 10, e1004142.	2.1	35
24	Effector CD4 T-cell transition to memory requires late cognate interactions that induce autocrine IL-2. Nature Communications, 2014, 5, 5377.	5.8	118
25	Cytokines in the Balance of Protection and Pathology During Mycobacterial Infections. Advances in Experimental Medicine and Biology, 2013, 783, 121-140.	0.8	55
26	Differential and Site Specific Impact of B Cells in the Protective Immune Response to Mycobacterium tuberculosis in the Mouse. PLoS ONE, 2013, 8, e61681.	1.1	45
27	Location, Location, Location: The Impact of Migratory Heterogeneity on T Cell Function. Frontiers in Immunology, 2013, 4, 311.	2.2	35
28	Is IL-17 Required to Control Tuberculosis?. , 2013, , 189-205.		0
29	Opposing Biological Functions of Tryptophan Catabolizing Enzymes During Intracellular Infection. Journal of Infectious Diseases, 2012, 205, 152-161.	1.9	121
30	Nitric oxide inhibits the accumulation of <scp>CD</scp> 4 ⁺ <scp>CD</scp> 4 ^{hi} <scp>T</scp> bet ⁺ <scp>CDcells in mycobacterial infection. European Journal of Immunology, 2012, 42, 3267-3279.</scp>	>6 9. ∕6∎	o≪l s up> <scp< td=""></scp<>
31	Protection versus pathology in tuberculosis: recent insights. Current Opinion in Immunology, 2012, 24, 431-437.	2.4	36
32	Role of innate cytokines in mycobacterial infection. Mucosal Immunology, 2011, 4, 252-260.	2.7	265
33	Cellular response to mycobacteria: balancing protection and pathology. Trends in Immunology, 2011, 32, 66-72.	2.9	69
34	IL-23 Is Required for Long-Term Control of <i>Mycobacterium tuberculosis</i> and B Cell Follicle Formation in the Infected Lung. Journal of Immunology, 2011, 187, 5402-5407.	0.4	172
35	What Do We Really Know about How CD4 T Cells Control Mycobacterium tuberculosis?. PLoS Pathogens, 2011, 7, e1002196.	2.1	23
36	Fibrinogen Regulates the Cytotoxicity of Mycobacterial Trehalose Dimycolate but Is Not Required for Cell Recruitment, Cytokine Response, or Control of Mycobacterial Infection. Infection and Immunity, 2010, 78, 1004-1011.	1.0	18

#	Article	IF	CITATIONS
37	Editorial: Be careful what you ask for: is the presence of IL-17 indicative of immunity?. Journal of Leukocyte Biology, 2010, 88, 221-223.	1.5	18
38	<i>Mycobacterium tuberculosis</i> infection induces <i>il12rb1</i> splicing to generate a novel IL-12RÎ ² 1 isoform that enhances DC migration. Journal of Experimental Medicine, 2010, 207, 591-605.	4.2	44
39	Mycobacterium tuberculosis infection induces il12rb1 splicing to generate a novel IL-12Rβ1 isoform that enhances DC migration. Journal of Experimental Medicine, 2010, 207, 897-897.	4.2	Ο
40	Pathological role of interleukin 17 in mice subjected to repeated BCG vaccination after infection with <i>Mycobacterium tuberculosis</i> . Journal of Experimental Medicine, 2010, 207, 1609-1616.	4.2	230
41	IL-17 and Th17 cells in tuberculosis. Cytokine and Growth Factor Reviews, 2010, 21, 455-462.	3.2	254
42	In a Murine Tuberculosis Model, the Absence of Homeostatic Chemokines Delays Granuloma Formation and Protective Immunity. Journal of Immunology, 2009, 183, 8004-8014.	0.4	119
43	ILâ€17 and antiâ€bacterial immunity: Protection <i>versus</i> tissue damage. European Journal of Immunology, 2009, 39, 649-652.	1.6	46
44	Hostversuspathogen: Two sides of the same challenge in the TB world. European Journal of Immunology, 2009, 39, 632-633.	1.6	3
45	T cells in mycobacterial infection and disease. Current Opinion in Immunology, 2009, 21, 378-384.	2.4	87
46	Cell-Mediated Immune Responses in Tuberculosis. Annual Review of Immunology, 2009, 27, 393-422.	9.5	1,030
47	Tc17, a Unique Subset of CD8 T Cells That Can Protect against Lethal Influenza Challenge. Journal of Immunology, 2009, 182, 3469-3481.	0.4	315
48	Is IL-17 required to control tuberculosis?. , 2009, , 135-147.		1
49	Early Tâ€cell responses in tuberculosis immunity. Immunological Reviews, 2008, 225, 284-299.	2.8	102
50	The role of cytokines in the initiation, expansion, and control of cellular immunity to tuberculosis. Immunological Reviews, 2008, 226, 191-204.	2.8	549
51	IL-23 and IL-17 in tuberculosis. Cytokine, 2008, 41, 79-83.	1.4	255
52	ESAT-6-specific CD4 T cell responses to aerosol <i>Mycobacterium tuberculosis</i> infection are initiated in the mediastinal lymph nodes. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10961-10966.	3.3	197
53	Cutting Edge: T-bet and IL-27R Are Critical for In Vivo IFN-Î ³ Production by CD8 T Cells during Infection. Journal of Immunology, 2008, 180, 693-697.	0.4	89
54	<i>Yersinia pestis</i> Evades TLR4-dependent Induction of IL-12(p40)2 by Dendritic Cells and Subsequent Cell Migration. Journal of Immunology, 2008, 181, 5560-5567.	0.4	37

#	Article	IF	CITATIONS
55	IL-12p40: an inherently agonistic cytokine. Trends in Immunology, 2007, 28, 33-38.	2.9	281
56	ILâ€23 and ILâ€17 have a multiâ€faceted largely negative role in fungal infection. European Journal of Immunology, 2007, 37, 2680-2682.	1.6	15
57	IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nature Immunology, 2007, 8, 369-377.	7.0	1,253
58	Interleukin-12 and tuberculosis: an old story revisited. Current Opinion in Immunology, 2007, 19, 441-447.	2.4	123
59	Cutting Edge: IFN-Î ³ Regulates the Induction and Expansion of IL-17-Producing CD4 T Cells during Mycobacterial Infection. Journal of Immunology, 2006, 177, 1416-1420.	0.4	249
60	Interleukin 12p40 is required for dendritic cell migration and T cell priming after Mycobacterium tuberculosis infection. Journal of Experimental Medicine, 2006, 203, 1805-1815.	4.2	276
61	IL-23 Compensates for the Absence of IL-12p70 and Is Essential for the IL-17 Response during Tuberculosis but Is Dispensable for Protection and Antigen-Specific IFN-γ Responses if IL-12p70 Is Available. Journal of Immunology, 2005, 175, 788-795.	0.4	422
62	Gamma Interferon-Induced T-Cell Loss in Virulent Mycobacterium avium Infection. Infection and Immunity, 2005, 73, 3577-3586.	1.0	43
63	Disruption of granulocyte macrophage-colony stimulating factor production in the lungs severely affects the ability of mice to control Mycobacterium tuberculosis infection. Journal of Leukocyte Biology, 2005, 77, 914-922.	1.5	174
64	An oily, sustained counter-regulatory response to TB. Journal of Clinical Investigation, 2005, 115, 1473-1476.	3.9	7
65	Intact type 1 immunity and immune-associated coagulative responses in mice lacking IFNÂ-inducible fibrinogen-like protein 2. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3005-3010.	3.3	46
66	A Limited Antigen-Specific Cellular Response Is Sufficient for the Early Control of Mycobacterium tuberculosis in the Lung but Is Insufficient for Long-Term Survival. Infection and Immunity, 2004, 72, 3759-3768.	1.0	15
67	IL-27 Signaling Compromises Control of Bacterial Growth in Mycobacteria-Infected Mice. Journal of Immunology, 2004, 173, 7490-7496.	0.4	129
68	Role of chemokine ligand 2 in the protective response to early murine pulmonary tuberculosis. Immunology, 2003, 109, 547-551.	2.0	61
69	Macrophage signalling upon mycobacterial infection: the MAP kinases lead the way. Cellular Microbiology, 2003, 5, 133-142.	1.1	193
70	The cytolytic activity of natural killer cells is not involved in the restriction of Mycobacterium avium growth. International Immunology, 2003, 15, 895-901.	1.8	19
71	The Study ofMycobacterium lepraeInfection in Interferonâ€Î³ Gene–Disrupted Mice as a Model to Explore the Immunopathologic Spectrum of Leprosy. Journal of Infectious Diseases, 2002, 185, S1-S8.	1.9	39
72	Mice Lacking Bioactive IL-12 Can Generate Protective, Antigen-Specific Cellular Responses to Mycobacterial Infection Only if the IL-12 p40 Subunit Is Present. Journal of Immunology, 2002, 168, 1322-1327.	0.4	280

#	Article	IF	CITATIONS
73	In Vivo IL-10 Production Reactivates Chronic Pulmonary Tuberculosis in C57BL/6 Mice. Journal of Immunology, 2002, 169, 6343-6351.	0.4	243
74	Murine model of tuberculosis. Methods in Microbiology, 2002, 32, 433-462.	0.4	20
75	Activation of the Mitogen-Activated Protein Kinase Signaling Pathway Is Instrumental in Determining the Ability of <i>Mycobacterium avium</i> to Grow in Murine Macrophages. Journal of Immunology, 2002, 168, 825-833.	0.4	84
76	Transient Requirement of the PrrA-PrrB Two-Component System for Early Intracellular Multiplication of Mycobacterium tuberculosis. Infection and Immunity, 2002, 70, 2256-2263.	1.0	87
77	IFN-Î ³ and NO in mycobacterial disease: new jobs for old hands. Trends in Microbiology, 2002, 10, 221-226.	3.5	120
78	Characterization of virulence, colony morphotype and the glycopeptidolipid of Mycobacterium avium strain 104. Tuberculosis, 2002, 82, 293-300.	0.8	39
79	CD4 is required for the development of a protective granulomatous response to pulmonary tuberculosis. Cellular Immunology, 2002, 216, 65-72.	1.4	134
80	Immunological basis of the development of necrotic lesions following Mycobacterium avium infection. Immunology, 2002, 106, 590-601.	2.0	44
81	Cu,Zn Superoxide Dismutase of Mycobacterium tuberculosis Contributes to Survival in Activated Macrophages That Are Generating an Oxidative Burst. Infection and Immunity, 2001, 69, 4980-4987.	1.0	263
82	Inflammation and Lymphocyte Activation during Mycobacterial Infection in the Interferon-Î ³ -Deficient Mouse. Cellular Immunology, 2001, 211, 43-50.	1.4	87
83	Immunological Basis for Reactivation of Tuberculosis in Mice. Infection and Immunity, 2001, 69, 3264-3270.	1.0	57
84	Restraining mycobacteria: Role of granulomas in mycobacterial infections. Immunology and Cell Biology, 2000, 78, 334-341.	1.0	249
85	CD95 signaling is not required for the down regulation of cellular responses to systemic Mycobacterium tuberculosis infection. Tubercle and Lung Disease, 2000, 80, 273-279.	2.1	1
86	A Novel Nonclassic β 2-Microglobulin–Restricted Mechanism Influencing Early Lymphocyte Accumulation and Subsequent Resistance to Tuberculosis in the Lung. American Journal of Respiratory Cell and Molecular Biology, 2000, 23, 188-193.	1.4	73
87	Interleukin-6 Induces Early Gamma Interferon Production in the Infected Lung but Is Not Required for Generation of Specific Immunity to Mycobacterium tuberculosis Infection. Infection and Immunity, 2000, 68, 3322-3326.	1.0	183
88	Transient Loss of Resistance to Pulmonary Tuberculosis in p47 phoxâ^'/â^' Mice. Infection and Immunity, 2000, 68, 1231-1234.	1.0	170
89	Expression of the Nitric Oxide Synthase 2 Gene Is Not Essential for Early Control of Mycobacterium tuberculosis in the Murine Lung. Infection and Immunity, 2000, 68, 6879-6882.	1.0	120
90	Neutrophils Play a Protective Nonphagocytic Role in Systemic Mycobacterium tuberculosis Infection of Mice. Infection and Immunity, 2000, 68, 577-583.	1.0	259

#	Article	IF	CITATIONS
91	Cytokine/chemokine cascades in immunity to tuberculosis. Trends in Immunology, 1999, 20, 307-312.	7.5	219
92	The Intravenous Model of Murine Tuberculosis is Less Pathogenic Than the Aerogenic Model Owing to a More Rapid Induction of Systemic Immunity. Scandinavian Journal of Immunology, 1999, 49, 362-366.	1.3	59
93	NOS2-derived nitric oxide regulates the size, quantity and quality of granuloma formation in Mycobacterium avium -infected mice without affecting bacterial loads. Immunology, 1999, 98, 313-323.	2.0	60
94	Resistance of Virulent <i>Mycobacterium avium</i> to Gamma Interferon-Mediated Antimicrobial Activity Suggests Additional Signals for Induction of Mycobacteriostasis. Infection and Immunity, 1999, 67, 3610-3618.	1.0	55
95	Immunopathogenesis of Mycobacterium avium infection. Frontiers in Bioscience - Landmark, 1998, 3, e141-148.	3.0	22
96	Adequate Expression of Protective Immunity in the Absence of Granuloma Formation in Mycobacterium tuberculosis -Infected Mice with a Disruption in the Intracellular Adhesion Molecule 1 Gene. Infection and Immunity, 1998, 66, 1666-1670.	1.0	78
97	Interleukin 12 (IL-12) Is Crucial to the Development of Protective Immunity in Mice Intravenously Infected with Mycobacterium tuberculosis. Journal of Experimental Medicine, 1997, 186, 39-45.	4.2	635
98	Mycobacterium tuberculosis-driven processes in gene-disrupted mice. Bulletin De L'Institut Pasteur, 1997, 95, 85-96.	0.7	12
99	Expression of memory immunity in the lung following re-exposure to Mycobacterium tuberculosis. Tubercle and Lung Disease, 1997, 78, 67-73.	2.1	79
100	The protective immune response to Mycobacterium tuberculosis. Current Opinion in Immunology, 1995, 7, 512-516.	2.4	172
101	Cytokines in Immunity to Tuberculosis. , 0, , 389-397.		3
102	Acquired Immunity: Chronic Bacterial Infections. , 0, , 279-287.		0

Acquired Immunity: Chronic Bacterial Infections., 0, , 279-287. 102