Riku Kubota

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5025343/publications.pdf Version: 2024-02-01

PIKII KUBOTA

#	Article	IF	CITATIONS
1	Chemical Sensing Platforms Based on Organic Thin-Film Transistors Functionalized with Artificial Receptors. ACS Sensors, 2019, 4, 2571-2587.	7.8	62
2	Molecular self-assembled chemosensors and their arrays. Coordination Chemistry Reviews, 2021, 429, 213607.	18.8	49
3	Simple Colorimetric Chemosensor Array for Oxyanions: Quantitative Assay for Herbicide Glyphosate. Analytical Chemistry, 2019, 91, 13627-13632.	6.5	46
4	Synthesis of Water-Soluble Dinuclear Mn-Porphyrin with Multiple Antioxidative Activities. ACS Medicinal Chemistry Letters, 2014, 5, 639-643.	2.8	35
5	Accurate chiral pattern recognition for amines from just a single chemosensor. Chemical Science, 2020, 11, 3790-3796.	7.4	34
6	Simplest Chemosensor Array for Phosphorylated Saccharides. Analytical Chemistry, 2019, 91, 15570-15576.	6.5	30
7	New class of artificial enzyme composed of Mn-porphyrin, imidazole, and cucurbit[10]uril toward use as a therapeutic antioxidant. Journal of Materials Chemistry B, 2018, 6, 7050-7059.	5.8	21
8	A bioinspired polymer-bound Mn-porphyrin as an artificial active center of catalase. Chemical Communications, 2014, 50, 15909-15912.	4.1	20
9	The potential of lipid-polymer nanoparticles as epigenetic and ROS control approaches for COPD. Free Radical Research, 2020, 54, 829-840.	3.3	18
10	A Waterâ€Gated Organic Thinâ€Film Transistor for Glyphosate Detection: A Comparative Study with Fluorescence Sensing. Chemistry - A European Journal, 2020, 26, 14525-14529.	3.3	17
11	Supramolecular Sensor for Astringent Procyanidin C1: Fluorescent Artificial Tongue for Wine Components. Chemistry - A European Journal, 2020, 26, 16236-16240.	3.3	16
12	Easy-to-Prepare Mini-Chemosensor Array for Simultaneous Detection of Cysteine and Glutathione Derivatives. ACS Applied Bio Materials, 2021, 4, 2113-2119.	4.6	14
13	Fluorescence Anion Chemosensor Array Based on Pyrenylboronic Acid. Frontiers in Chemistry, 2020, 8, 414.	3.6	12
14	Catalytic antioxidants for therapeutic medicine. Journal of Materials Chemistry B, 2019, 7, 3165-3191.	5.8	11
15	Lactoferrin-modified nanoparticles loaded with potent antioxidant Mn-porphyrins exhibit enhanced antioxidative activity in vitro intranasal brain delivery model. Journal of Materials Chemistry B, 2017, 5, 1765-1771.	5.8	8
16	Facile Indicator Displacement Assay-based Supramolecular Chemosensor: Quantitative Colorimetric Determination of Xylose and Glucose in the Presence of Ascorbic Acid. Chemistry Letters, 2019, 48, 1368-1370.	1.3	6
17	Protein Assays on Organic Electronics: Rational Device and Material Designs for Organic Transistorâ€Based Sensors. ChemistryOpen, 2020, 9, 573-581.	1.9	5
18	A Waterâ€Gated Organic Thinâ€Film Transistor for Glyphosate Detection: A Comparative Study with Fluorescence Sensing. Chemistry - A European Journal, 2020, 26, 14506-14506.	3.3	1

RΙΚUΒΟΤΑ

#	Article	IF	CITATIONS
19	Lactoferrin-Modified Nanoparticle Loading Potent Antioxidant Mn-Porphyrin Exhibits Enhanced Antioxidative Activity In in Vitro intranasal Brain Delivery Model. Free Radical Biology and Medicine, 2016, 100, S101.	2.9	0
20	Extended-gate-type Organic Field-effect Transistors for the Detection of Potential Psychological Stress Markers. Sensors and Materials, 2021, 33, 211.	0.5	0
21	Suppression of Malachite Green-Induced Toxicity to Human Liver Cells Utilizing Host-Guest Chemistry of Cucurbit[7]uril. Analytical Sciences, 2021, 37, 525-528.	1.6	0
22	Preparation of Mitochondria―and Epigeneticsâ€Targeting Nanoparticles for Suppression of Cancer Metastasis. Particle and Particle Systems Characterization, 2021, 38, 2100003.	2.3	0