Stephen P Hunger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5025319/publications.pdf Version: 2024-02-01

STEDHEN D HUNCED

#	Article	IF	CITATIONS
1	Acute Lymphoblastic Leukemia in Children. New England Journal of Medicine, 2015, 373, 1541-1552.	27.0	1,484
2	The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature, 2012, 481, 157-163.	27.8	1,430
3	Deletion of <i>IKZF1</i> and Prognosis in Acute Lymphoblastic Leukemia. New England Journal of Medicine, 2009, 360, 470-480.	27.0	1,260
4	Targetable Kinase-Activating Lesions in Ph-like Acute Lymphoblastic Leukemia. New England Journal of Medicine, 2014, 371, 1005-1015.	27.0	1,161
5	Improved Survival for Children and Adolescents With Acute Lymphoblastic Leukemia Between 1990 and 2005: A Report From the Children's Oncology Group. Journal of Clinical Oncology, 2012, 30, 1663-1669.	1.6	944
6	Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia and its relationship to other prognostic factors: a Children's Oncology Group study. Blood, 2008, 111, 5477-5485.	1.4	751
7	Childhood Acute Lymphoblastic Leukemia: Progress Through Collaboration. Journal of Clinical Oncology, 2015, 33, 2938-2948.	1.6	747
8	The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nature Genetics, 2017, 49, 1211-1218.	21.4	693
9	An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element. Science, 2014, 346, 1373-1377.	12.6	665
10	Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias and solid tumours. Nature, 2018, 555, 371-376.	27.8	649
11	Improved Early Event-Free Survival With Imatinib in Philadelphia Chromosome–Positive Acute Lymphoblastic Leukemia: A Children's Oncology Group Study. Journal of Clinical Oncology, 2009, 27, 5175-5181.	1.6	643
12	Genetic Alterations Activating Kinase and Cytokine Receptor Signaling in High-Risk Acute Lymphoblastic Leukemia. Cancer Cell, 2012, 22, 153-166.	16.8	621
13	The genomic landscape of hypodiploid acute lymphoblastic leukemia. Nature Genetics, 2013, 45, 242-252.	21.4	588
14	Rearrangement of CRLF2 in B-progenitor– and Down syndrome–associated acute lymphoblastic leukemia. Nature Genetics, 2009, 41, 1243-1246.	21.4	559
15	JAK mutations in high-risk childhood acute lymphoblastic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9414-9418.	7.1	516
16	Rearrangement of CRLF2 is associated with mutation of JAK kinases, alteration of IKZF1, Hispanic/Latino ethnicity, and a poor outcome in pediatric B-progenitor acute lymphoblastic leukemia. Blood, 2010, 115, 5312-5321.	1.4	503
17	Germline genomic variants associated with childhood acute lymphoblastic leukemia. Nature Genetics, 2009, 41, 1001-1005.	21.4	459
18	Risk- and response-based classification of childhood B-precursor acute lymphoblastic leukemia: a combined analysis of prognostic markers from the Pediatric Oncology Group (POG) and Children's Cancer Group (CCG). Blood, 2007, 109, 926-935.	1.4	413

#	Article	IF	CITATIONS
19	PAX5-driven subtypes of B-progenitor acute lymphoblastic leukemia. Nature Genetics, 2019, 51, 296-307.	21.4	384
20	Identification of novel cluster groups in pediatric high-risk B-precursor acute lymphoblastic leukemia with gene expression profiling: correlation with genome-wide DNA copy number alterations, clinical characteristics, and outcome. Blood, 2010, 116, 4874-4884.	1.4	370
21	Dexamethasone and High-Dose Methotrexate Improve Outcome for Children and Young Adults With High-Risk B-Acute Lymphoblastic Leukemia: A Report From Children's Oncology Group Study AALL0232. Journal of Clinical Oncology, 2016, 34, 2380-2388.	1.6	301
22	Prognostic significance of minimal residual disease in high risk B-ALL: a report from Children's Oncology Group study AALL0232. Blood, 2015, 126, 964-971.	1.4	287
23	Rise and fall of subclones from diagnosis to relapse in pediatric B-acute lymphoblastic leukaemia. Nature Communications, 2015, 6, 6604.	12.8	281
24	Germline mutations in ETV6 are associated with thrombocytopenia, red cell macrocytosis and predisposition to lymphoblastic leukemia. Nature Genetics, 2015, 47, 535-538.	21.4	274
25	Relapse-specific mutations in NT5C2 in childhood acute lymphoblastic leukemia. Nature Genetics, 2013, 45, 290-294.	21.4	264
26	Inherited GATA3 variants are associated with Ph-like childhood acute lymphoblastic leukemia and risk of relapse. Nature Genetics, 2013, 45, 1494-1498.	21.4	264
27	Targeting JAK1/2 and mTOR in murine xenograft models of Ph-like acute lymphoblastic leukemia. Blood, 2012, 120, 3510-3518.	1.4	263
28	Key pathways are frequently mutated in high-risk childhood acute lymphoblastic leukemia: a report from the Children's Oncology Group. Blood, 2011, 118, 3080-3087.	1.4	255
29	Outcomes after Induction Failure in Childhood Acute Lymphoblastic Leukemia. New England Journal of Medicine, 2012, 366, 1371-1381.	27.0	252
30	Targetable kinase gene fusions in high-risk B-ALL: a study from the Children's Oncology Group. Blood, 2017, 129, 3352-3361.	1.4	236
31	The genetic basis and cell of origin of mixed phenotype acute leukaemia. Nature, 2018, 562, 373-379.	27.8	236
32	Association of an Inherited Genetic Variant With Vincristine-Related Peripheral Neuropathy in Children With Acute Lymphoblastic Leukemia. JAMA - Journal of the American Medical Association, 2015, 313, 815.	7.4	234
33	Redefining ALL classification: toward detecting high-risk ALL and implementing precision medicine. Blood, 2015, 125, 3977-3987.	1.4	232
34	Deregulation of DUX4 and ERG in acute lymphoblastic leukemia. Nature Genetics, 2016, 48, 1481-1489.	21.4	231
35	Genomic analyses identify recurrent MEF2D fusions in acute lymphoblastic leukaemia. Nature Communications, 2016, 7, 13331.	12.8	218
36	Reinduction Platform for Children With First Marrow Relapse of Acute Lymphoblastic Leukemia: A Children's Oncology Group Study. Journal of Clinical Oncology, 2008, 26, 3971-3978.	1.6	210

#	Article	IF	CITATIONS
37	Outcome modeling with CRLF2, IKZF1, JAK, and minimal residual disease in pediatric acute lymphoblastic leukemia: a Children's Oncology Group Study. Blood, 2012, 119, 3512-3522.	1.4	210
38	Novel Susceptibility Variants at 10p12.31-12.2 for Childhood Acute Lymphoblastic Leukemia in Ethnically Diverse Populations. Journal of the National Cancer Institute, 2013, 105, 733-742.	6.3	208
39	Clinical Outcome of Children With Newly Diagnosed Philadelphia Chromosome–Positive Acute Lymphoblastic Leukemia Treated Between 1995 and 2005. Journal of Clinical Oncology, 2010, 28, 4755-4761.	1.6	203
40	Aberrant STAT5 and PI3K/mTOR pathway signaling occurs in human CRLF2-rearranged B-precursor acute lymphoblastic leukemia. Blood, 2012, 120, 833-842.	1.4	201
41	Maturation Stage of T-cell Acute Lymphoblastic Leukemia Determines BCL-2 versus BCL-XL Dependence and Sensitivity to ABT-199. Cancer Discovery, 2014, 4, 1074-1087.	9.4	201
42	Philadelphia chromosome–like acute lymphoblastic leukemia. Blood, 2017, 130, 2064-2072.	1.4	198
43	Efficacy of JAK/STAT pathway inhibition in murine xenograft models of early T-cell precursor (ETP) acute lymphoblastic leukemia. Blood, 2015, 125, 1759-1767.	1.4	189
44	Dasatinib Plus Intensive Chemotherapy in Children, Adolescents, and Young Adults With Philadelphia Chromosome–Positive Acute Lymphoblastic Leukemia: Results of Children's Oncology Group Trial AALL0622. Journal of Clinical Oncology, 2018, 36, 2306-2314.	1.6	185
45	Integrated genomic analysis of relapsed childhood acute lymphoblastic leukemia reveals therapeutic strategies. Blood, 2011, 118, 5218-5226.	1.4	180
46	Preclinical efficacy of daratumumab in T-cell acute lymphoblastic leukemia. Blood, 2018, 131, 995-999.	1.4	170
47	Improved Survival for Children and Young Adults With T-Lineage Acute Lymphoblastic Leukemia: Results From the Children's Oncology Group AALL0434 Methotrexate Randomization. Journal of Clinical Oncology, 2018, 36, 2926-2934.	1.6	164
48	The BCL11B tumor suppressor is mutated across the major molecular subtypes of T-cell acute lymphoblastic leukemia. Blood, 2011, 118, 4169-4173.	1.4	162
49	Germline genetic variation in ETV6 and risk of childhood acute lymphoblastic leukaemia: a systematic genetic study. Lancet Oncology, The, 2015, 16, 1659-1666.	10.7	161
50	Measurable residual disease detection by high-throughput sequencing improves risk stratification for pediatric B-ALL. Blood, 2018, 131, 1350-1359.	1.4	158
51	Tyrosine kinome sequencing of pediatric acute lymphoblastic leukemia: a report from the Children's Oncology Group TARGET Project. Blood, 2013, 121, 485-488.	1.4	156
52	Children's Oncology Group's 2013 blueprint for research: acute lymphoblastic leukemia. Pediatric Blood and Cancer, 2013, 60, 957-963.	1.5	149
53	Effect of alternate-week versus continuous dexamethasone scheduling on the risk of osteonecrosis in paediatric patients with acute lymphoblastic leukaemia: results from the CCG-1961 randomised cohort trial. Lancet Oncology, The, 2012, 13, 906-915.	10.7	143
54	Germline Genetic IKZF1 Variation and Predisposition to Childhood Acute Lymphoblastic Leukemia. Cancer Cell, 2018, 33, 937-948.e8.	16.8	142

#	Article	IF	CITATIONS
55	Clinical Cancer Advances 2016: Annual Report on Progress Against Cancer From the American Society of Clinical Oncology, 2016, 34, 987-1011.	1.6	141
56	Potent efficacy of combined PI3K/mTOR and JAK or ABL inhibition in murine xenograft models of Ph-like acute lymphoblastic leukemia. Blood, 2017, 129, 177-187.	1.4	138
57	Children's Oncology Group AALL0434: A Phase III Randomized Clinical Trial Testing Nelarabine in Newly Diagnosed T-Cell Acute Lymphoblastic Leukemia. Journal of Clinical Oncology, 2020, 38, 3282-3293.	1.6	136
58	Inactivation of ribosomal protein L22 promotes transformation by induction of the stemness factor, Lin28B. Blood, 2012, 120, 3764-3773.	1.4	132
59	Young Adults With Acute Lymphoblastic Leukemia Have an Excellent Outcome With Chemotherapy Alone and Benefit From Intensive Postinduction Treatment: A Report From the Children's Oncology Group. Journal of Clinical Oncology, 2009, 27, 5189-5194.	1.6	128
60	Signalling thresholds and negative B-cell selection in acute lymphoblastic leukaemia. Nature, 2015, 521, 357-361.	27.8	127
61	Escalating intravenous methotrexate improves event-free survival in children with standard-risk acute lymphoblastic leukemia: a report from the Children's Oncology Group. Blood, 2011, 118, 243-251.	1.4	126
62	Intrachromosomal Amplification of Chromosome 21 Is Associated With Inferior Outcomes in Children With Acute Lymphoblastic Leukemia Treated in Contemporary Standard-Risk Children's Oncology Group Studies: A Report From the Children's Oncology Group. Journal of Clinical Oncology, 2013, 31, 3397-3402	1.6	125
63	<i>TP53</i> Germline Variations Influence the Predisposition and Prognosis of B-Cell Acute Lymphoblastic Leukemia in Children. Journal of Clinical Oncology, 2018, 36, 591-599.	1.6	121
64	Truncating Erythropoietin Receptor Rearrangements in Acute Lymphoblastic Leukemia. Cancer Cell, 2016, 29, 186-200.	16.8	118
65	Current Concepts in Pediatric Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. Frontiers in Oncology, 2014, 4, 54.	2.8	117
66	Impact of Asparaginase Discontinuation on Outcome in Childhood Acute Lymphoblastic Leukemia: A Report From the Children's Oncology Group. Journal of Clinical Oncology, 2020, 38, 1897-1905.	1.6	117
67	Influence of Cranial Radiotherapy on Outcome in Children With Acute Lymphoblastic Leukemia Treated With Contemporary Therapy. Journal of Clinical Oncology, 2016, 34, 919-926.	1.6	111
68	Gene expression profiles predictive of outcome and age in infant acute lymphoblastic leukemia: a Children's Oncology Group study. Blood, 2012, 119, 1872-1881.	1.4	110
69	A genome-wide association study of susceptibility to acute lymphoblastic leukemia in adolescents and young adults. Blood, 2015, 125, 680-686.	1.4	110
70	Self-Enforcing Feedback Activation between BCL6 and Pre-B Cell Receptor Signaling Defines a Distinct Subtype of Acute Lymphoblastic Leukemia. Cancer Cell, 2015, 27, 409-425.	16.8	109
71	Erk Negative Feedback Control Enables Pre-B Cell Transformation and Represents a Therapeutic Target in Acute Lymphoblastic Leukemia. Cancer Cell, 2015, 28, 114-128.	16.8	107
72	Outcome in Children With Standard-Risk B-Cell Acute Lymphoblastic Leukemia: Results of Children's Oncology Group Trial AALL0331. Journal of Clinical Oncology, 2020, 38, 602-612.	1.6	107

#	Article	IF	CITATIONS
73	Biologic and clinical characteristics of adolescent and young adult cancers: Acute lymphoblastic leukemia, colorectal cancer, breast cancer, melanoma, and sarcoma. Cancer, 2016, 122, 1017-1028.	4.1	106
74	Genetics of glucocorticoid-associated osteonecrosis in children with acute lymphoblastic leukemia. Blood, 2015, 126, 1770-1776.	1.4	102
75	Genomic and outcome analyses of Ph-like ALL in NCI standard-risk patients: a report from the Children's Oncology Group. Blood, 2018, 132, 815-824.	1.4	97
76	Absence of Biallelic <i>TCR</i> γ Deletion Predicts Early Treatment Failure in Pediatric T-Cell Acute Lymphoblastic Leukemia. Journal of Clinical Oncology, 2010, 28, 3816-3823.	1.6	93
77	Pharmacokinetic and Pharmacodynamic Properties of Calaspargase Pegol <i>Escherichia coli</i> L-Asparaginase in the Treatment of Patients With Acute Lymphoblastic Leukemia: Results From Children's Oncology Group Study AALL07P4. Journal of Clinical Oncology, 2014, 32, 3874-3882.	1.6	91
78	How I treat relapsed acute lymphoblastic leukemia in the pediatric population. Blood, 2020, 136, 1803-1812.	1.4	90
79	Predicting relapse risk in childhood acute lymphoblastic leukaemia. British Journal of Haematology, 2013, 162, 606-620.	2.5	89
80	Reâ€induction chemoimmunotherapy with epratuzumab in relapsed acute lymphoblastic leukemia (ALL): Phase II results from Children's Oncology Group (COG) study ADVL04P2. Pediatric Blood and Cancer, 2015, 62, 1171-1175.	1.5	89
81	MAPK signaling cascades mediate distinct glucocorticoid resistance mechanisms in pediatric leukemia. Blood, 2015, 126, 2202-2212.	1.4	88
82	Clinical and Genetic Risk Factors for Acute Pancreatitis in Patients With Acute Lymphoblastic Leukemia. Journal of Clinical Oncology, 2016, 34, 2133-2140.	1.6	88
83	HLA-DRB1*07:01 is associated with a higher risk of asparaginase allergies. Blood, 2014, 124, 1266-1276.	1.4	84
84	Enhancer Hijacking Drives Oncogenic <i>BCL11B</i> Expression in Lineage-Ambiguous Stem Cell Leukemia. Cancer Discovery, 2021, 11, 2846-2867.	9.4	83
85	Acquisition of p16INK4Aandp15INK4BGene Abnormalities Between Initial Diagnosis and Relapse in Children With Acute Lymphoblastic Leukemia. Blood, 1999, 93, 2380-2385.	1.4	82
86	Pilot Study of Nelarabine in Combination With Intensive Chemotherapy in High-Risk T-Cell Acute Lymphoblastic Leukemia: A Report From the Children's Oncology Group. Journal of Clinical Oncology, 2012, 30, 2753-2759.	1.6	82
87	Clinical utility of custom-designed NGS panel testing in pediatric tumors. Genome Medicine, 2019, 11, 32.	8.2	79
88	Safe integration of nelarabine into intensive chemotherapy in newly diagnosed T ell acute lymphoblastic leukemia: Children's Oncology Group Study AALL0434. Pediatric Blood and Cancer, 2015, 62, 1176-1183.	1.5	76
89	Oncogenic role and therapeutic targeting of ABL-class and JAK-STAT activating kinase alterations in Ph-like ALL. Blood Advances, 2017, 1, 1657-1671.	5.2	76
90	Inherited coding variants at the CDKN2A locus influence susceptibility to acute lymphoblastic leukaemia in children. Nature Communications, 2015, 6, 7553.	12.8	72

#	Article	IF	CITATIONS
91	Prevalence and predictors of anxiety and depression after completion of chemotherapy for childhood acute lymphoblastic leukemia: A prospective longitudinal study. Cancer, 2016, 122, 1608-1617.	4.1	69
92	Postrelapse survival in childhood acute lymphoblastic leukemia is independent of initial treatment intensity: a report from the Children's Oncology Group. Blood, 2011, 117, 3010-3015.	1.4	67
93	Characterization of leukemias with ETV6-ABL1 fusion. Haematologica, 2016, 101, 1082-1093.	3.5	66
94	Prospective, longitudinal assessment of quality of life in children from diagnosis to 3 months off treatment for standard risk acute lymphoblastic leukemia: Results of Children's Oncology Group study <scp>AALL0331</scp> . International Journal of Cancer, 2016, 138, 332-339.	5.1	66
95	Bortezomib reinduction chemotherapy in highâ€risk <scp>ALL</scp> in first relapse: a report from the Children's Oncology Group. British Journal of Haematology, 2019, 186, 274-285.	2.5	65
96	Development and Validation Of a Highly Sensitive and Specific Gene Expression Classifier To Prospectively Screen and Identify B-Precursor Acute Lymphoblastic Leukemia (ALL) Patients With a Philadelphia Chromosome-Like ("Ph-like―or "BCR-ABL1-Likeâ€) Signature For Therapeutic Targeting and Clinical Intervention. Blood, 2013, 122, 826-826.	1.4	65
97	Genome-wide analysis links NFATC2 with asparaginase hypersensitivity. Blood, 2015, 126, 69-75.	1.4	64
98	Impact of Initial CSF Findings on Outcome Among Patients With National Cancer Institute Standard- and High-Risk B-Cell Acute Lymphoblastic Leukemia: A Report From the Children's Oncology Group. Journal of Clinical Oncology, 2017, 35, 2527-2534.	1.6	64
99	Genomic characterization of paediatric acute lymphoblastic leukaemia: an opportunity for precision medicine therapeutics. British Journal of Haematology, 2017, 176, 867-882.	2.5	62
100	Wnt inhibition leads to improved chemosensitivity in paediatric acute lymphoblastic leukaemia. British Journal of Haematology, 2014, 167, 87-99.	2.5	61
101	Intensified chemotherapy without SCT in infant ALL: Results from COG P9407 (Cohort 3). Pediatric Blood and Cancer, 2015, 62, 419-426.	1.5	61
102	Delayed cancer diagnoses and high mortality in children during the COVIDâ€19 pandemic. Pediatric Blood and Cancer, 2020, 67, e28427.	1.5	61
103	Improving outcomes for highâ€risk ALL: Translating new discoveries into clinical care. Pediatric Blood and Cancer, 2011, 56, 984-993.	1.5	60
104	Reduced Morbidity and Mortality in Survivors of Childhood Acute Lymphoblastic Leukemia: A Report From the Childhood Cancer Survivor Study. Journal of Clinical Oncology, 2020, 38, 3418-3429.	1.6	60
105	Childhood acute lymphoblastic leukemia: Integrating genomics into therapy. Cancer, 2015, 121, 3577-3590.	4.1	59
106	Genetic risk factors for the development of osteonecrosis in children under age 10 treated for acute lymphoblastic leukemia. Blood, 2016, 127, 558-564.	1.4	56
107	Clinical efficacy of ruxolitinib and chemotherapy in a child with Philadelphia chromosome-like acute lymphoblastic leukemia with <i>GOLGA5-JAK2</i> fusion and induction failure. Haematologica, 2018, 103, e427-e431.	3.5	56
108	Excellent Outcomes With Reduced Frequency of Vincristine and Dexamethasone Pulses in Standard-Risk B-Lymphoblastic Leukemia: Results From Children's Oncology Group AALL0932. Journal of Clinical Oncology, 2021, 39, 1437-1447.	1.6	56

#	Article	IF	CITATIONS
109	Augmented therapy improves outcome for pediatric high risk acute lymphocytic leukemia: Results of Children's Oncology Group trial P9906. Pediatric Blood and Cancer, 2011, 57, 569-577.	1.5	55
110	COG AALL0434: A randomized trial testing nelarabine in newly diagnosed t-cell malignancy Journal of Clinical Oncology, 2018, 36, 10500-10500.	1.6	54
111	Evaluation of the <i>In Vitro</i> and <i>In Vivo</i> Efficacy of the JAK Inhibitor AZD1480 against JAK-Mutated Acute Lymphoblastic Leukemia. Molecular Cancer Therapeutics, 2015, 14, 364-374.	4.1	49
112	A framework to develop adapted treatment regimens to manage pediatric cancer in low―and middleâ€income countries: The Pediatric Oncology in Developing Countries (PODC) Committee of the International Pediatric Oncology Society (SIOP). Pediatric Blood and Cancer, 2017, 64, e26879.	1.5	48
113	Hedgehog pathway mutations drive oncogenic transformation in high-risk T-cell acute lymphoblastic leukemia. Leukemia, 2018, 32, 2126-2137.	7.2	48
114	Hematopoietic Stem-Cell Transplantation Does Not Improve the Poor Outcome of Children With Hypodiploid Acute Lymphoblastic Leukemia: A Report From Children's Oncology Group. Journal of Clinical Oncology, 2019, 37, 780-789.	1.6	48
115	The genomic landscape of pediatric acute lymphoblastic leukemia and precision medicine opportunities. Seminars in Cancer Biology, 2022, 84, 144-152.	9.6	47
116	Toxicity associated with intensive postinduction therapy incorporating clofarabine in the very highâ€risk stratum of patients with newly diagnosed highâ€risk Bâ€lymphoblastic leukemia: A report from the Children's Oncology Group study AALL1131. Cancer, 2018, 124, 1150-1159.	4.1	46
117	FLT3 inhibitor lestaurtinib plus chemotherapy for newly diagnosed KMT2A-rearranged infant acute lymphoblastic leukemia: Children's Oncology Group trial AALL0631. Leukemia, 2021, 35, 1279-1290.	7.2	46
118	Children's Oncology Group Trial AALL1231: A Phase III Clinical Trial Testing Bortezomib in Newly Diagnosed T-Cell Acute Lymphoblastic Leukemia and Lymphoma. Journal of Clinical Oncology, 2022, 40, 2106-2118.	1.6	45
119	Novel susceptibility variants at the ERG locus for childhood acute lymphoblastic leukemia in Hispanics. Blood, 2019, 133, 724-729.	1.4	44
120	Successful Outcomes of Newly Diagnosed T Lymphoblastic Lymphoma: Results From Children's Oncology Group AALL0434. Journal of Clinical Oncology, 2020, 38, 3062-3070.	1.6	42
121	Development and Clinical Validation of a Large Fusion Gene Panel for Pediatric Cancers. Journal of Molecular Diagnostics, 2019, 21, 873-883.	2.8	41
122	Impact of Intrathecal Triple Therapy Versus Intrathecal Methotrexate on Disease-Free Survival for High-Risk B-Lymphoblastic Leukemia: Children's Oncology Group Study AALL1131. Journal of Clinical Oncology, 2020, 38, 2628-2638.	1.6	41
123	Impact of high-risk cytogenetics on outcomes for children and young adults receiving CD19-directed CARÂT-cell therapy. Blood, 2022, 139, 2173-2185.	1.4	39
124	Neurocognitive Functioning of Children Treated for High-Risk B-Acute Lymphoblastic Leukemia Randomly Assigned to Different Methotrexate and Corticosteroid Treatment Strategies: A Report From the Children's Oncology Group. Journal of Clinical Oncology, 2017, 35, 2700-2707.	1.6	38
125	Tyrosine Kinase Inhibitor Use in Pediatric Philadelphia Chromosome–Positive Acute Lymphoblastic Anemia. Hematology American Society of Hematology Education Program, 2011, 2011, 361-365.	2.5	37
126	Severe pegaspargase hypersensitivity reaction rates (grade ≥3) with intravenous infusion vs. intramuscular injection: analysis of 54,280 doses administered to 16,534 patients on children's oncology group (COG) clinical trials. Leukemia and Lymphoma, 2018, 59, 1624-1633.	1.3	37

#	Article	IF	CITATIONS
127	PRC2 loss induces chemoresistance by repressing apoptosis in T cell acute lymphoblastic leukemia. Journal of Experimental Medicine, 2018, 215, 3094-3114.	8.5	37
128	Inherited genetic susceptibility to acute lymphoblastic leukemia in Down syndrome. Blood, 2019, 134, 1227-1237.	1.4	37
129	Molecular basis of <i>ETV6</i> -mediated predisposition to childhood acute lymphoblastic leukemia. Blood, 2021, 137, 364-373.	1.4	37
130	Single-cell multiomics reveals increased plasticity, resistant populations, and stem-cell–like blasts in <i>KMT2A</i> -rearranged leukemia. Blood, 2022, 139, 2198-2211.	1.4	37
131	NTRK Fusions Identified in Pediatric Tumors: The Frequency, Fusion Partners, and Clinical Outcome. JCO Precision Oncology, 2021, 1, 204-214.	3.0	36
132	Optimizing therapy in the modern age: differences in length of maintenance therapy in acute lymphoblastic leukemia. Blood, 2021, 137, 168-177.	1.4	35
133	Association of Genetic Ancestry With the Molecular Subtypes and Prognosis of Childhood Acute Lymphoblastic Leukemia. JAMA Oncology, 2022, 8, 354.	7.1	35
134	Masked hypodiploidy: Hypodiploid acute lymphoblastic leukemia (ALL) mimicking hyperdiploid ALL in children: A report from the Children's Oncology Group. Cancer Genetics, 2019, 238, 62-68.	0.4	32
135	Outcomes of paediatric patients with B-cell acute lymphocytic leukaemia with ABL-class fusion in the pre-tyrosine-kinase inhibitor era: a multicentre, retrospective, cohort study. Lancet Haematology,the, 2021, 8, e55-e66.	4.6	32
136	Decreased induction morbidity and mortality following modification to induction therapy in infants with acute lymphoblastic leukemia enrolled on AALL0631: A report from the children's oncology group. Pediatric Blood and Cancer, 2015, 62, 414-418.	1.5	31
137	Longitudinal analysis of qualityâ€ofâ€life outcomes in children during treatment for acute lymphoblastic leukemia: A report from the Children's Oncology Group AALL0932 trial. Cancer, 2018, 124, 571-579.	4.1	31
138	Prognostic factors for survival after relapsed acute lymphoblastic leukemia (ALL): A Children's Oncology Group (COG) study Journal of Clinical Oncology, 2019, 37, 10008-10008.	1.6	31
139	Targeting EIF4E signaling with ribavirin in infant acute lymphoblastic leukemia. Oncogene, 2019, 38, 2241-2262.	5.9	29
140	Outcomes after late bone marrow and very early central nervous system relapse of childhood B-acute lymphoblastic leukemia: a report from the Children's Oncology Group phase III study AALL0433. Haematologica, 2020, 106, 46-55.	3.5	29
141	Noncoding genetic variation in GATA3 increases acute lymphoblastic leukemia risk through local and global changes in chromatin conformation. Nature Genetics, 2022, 54, 170-179.	21.4	29
142	Isolated late testicular relapse of Bâ€cell acute lymphoblastic leukemia treated with intensive systemic chemotherapy and responseâ€based testicular radiation: A Children's Oncology Group study. Pediatric Blood and Cancer, 2018, 65, e26928.	1.5	28
143	Comparison of CALGB 10403 (Alliance) and COG AALL0232 toxicity results in young adults with acute lymphoblastic leukemia. Blood Advances, 2021, 5, 504-512.	5.2	28
144	Remission, treatment failure, and relapse in pediatric ALL: an international consensus of the Ponte-di-Legno Consortium. Blood, 2022, 139, 1785-1793.	1.4	28

#	Article	IF	CITATIONS
145	What Significance Should We Attribute to the Detection ofMLL Fusion Transcripts?. Blood, 1998, 92, 709-711.	1.4	26
146	Immunotherapy for ALL takes the world by storm. Nature Reviews Clinical Oncology, 2018, 15, 69-70.	27.6	25
147	Plasma asparaginase activity and asparagine depletion in acute lymphoblastic leukemia patients treated with pegaspargase on Children's Oncology Group AALL07P4. Leukemia and Lymphoma, 2019, 60, 1740-1748.	1.3	25
148	Replacing cyclophosphamide/cytarabine/mercaptopurine with cyclophosphamide/etoposide during consolidation/delayed intensification does not improve outcome for pediatric B-cell acute lymphoblastic leukemia: a report from the COG. Haematologica, 2019, 104, 986-992.	3.5	25
149	Therapy of low-risk subsets of childhood acute lymphoblastic leukemia: When do we say enough?. Pediatric Blood and Cancer, 2005, 45, 876-880.	1.5	24
150	Epigenetic silencing of <i><scp>SOCS</scp>5</i> potentiates <scp>JAK</scp> â€ <scp>STAT</scp> signaling and progression of Tâ€cell acute lymphoblastic leukemia. Cancer Science, 2019, 110, 1931-1946.	3.9	24
151	CA180-372: An International Collaborative Phase 2 Trial of Dasatinib and Chemotherapy in Pediatric Patients with Newly Diagnosed Philadelphia Chromosome Positive Acute Lymphoblastic Leukemia (Ph+) Tj ETQq1	110478431	. ⊉ 3gBT /Ove
152	Toxicity assessment of molecularly targeted drugs incorporated into multiagent chemotherapy regimens for pediatric acute lymphocytic leukemia (ALL): Review from an international consensus conference. Pediatric Blood and Cancer, 2010, 54, 872-878.	1.5	22
153	Hyperdiploidy andE2A-PBX1 fusion in an adult with t(1;19)+ acute lymphoblastic leukemia: Case report and review of the literature. , 1997, 20, 392-398.		20
154	RUNX2 regulates leukemic cell metabolism and chemotaxis in high-risk T cell acute lymphoblastic leukemia. Journal of Clinical Investigation, 2021, 131, .	8.2	20
155	Germline RUNX1 variation and predisposition to childhood acute lymphoblastic leukemia. Journal of Clinical Investigation, 2021, 131, .	8.2	20
156	Enhancer retargeting of <i>CDX2</i> and <i>UBTF::ATXN7L3</i> define a subtype of high-risk B-progenitor acute lymphoblastic leukemia. Blood, 2022, 139, 3519-3531.	1.4	20
157	Favorable Trisomies and <i>ETV6-RUNX1</i> Predict Cure in Low-Risk B-Cell Acute Lymphoblastic Leukemia: Results From Children's Oncology Group Trial AALL0331. Journal of Clinical Oncology, 2021, 39, 1540-1552.	1.6	19
158	Outcome of Children with Standardâ€Risk Tâ€Lineage Acute Lymphoblastic Leukemia—Comparison among Different Treatment Strategies. Pediatric Blood and Cancer, 2016, 63, 255-261.	1.5	17
159	A POETIC Phase II study of continuous oral everolimus in recurrent, radiographically progressive pediatric lowâ€grade glioma. Pediatric Blood and Cancer, 2021, 68, e28787.	1.5	17
160	Fanconi-BRCA pathway mutations in childhood T-cell acute lymphoblastic leukemia. PLoS ONE, 2019, 14, e0221288.	2.5	16
161	Matched Targeted Therapy for Pediatric Patients with Relapsed, Refractory, or High-Risk Leukemias: A Report from the LEAP Consortium. Cancer Discovery, 2021, 11, 1424-1439.	9.4	16
162	Outstanding Outcome for Children with Standard Risk-Low (SR-Low) Acute Lymphoblastic Leukemia (ALL) and No Benefit to Intensified Peg-Asparaginase (PEG-ASNase) Therapy: Results of Children's Oncology Group (COG) Study AALL0331. Blood, 2014, 124, 793-793.	1.4	15

#	Article	IF	CITATIONS
163	Diverse noncoding mutations contribute to deregulation of cis-regulatory landscape in pediatric cancers. Science Advances, 2020, 6, eaba3064.	10.3	14
164	Outcomes in adolescent and young adult patients (16 to 30 years) compared to younger patients treated for high-risk B-lymphoblastic leukemia: report from Children's Oncology Group Study AALL0232. Leukemia, 2022, 36, 648-655.	7.2	14
165	Cost comparison by treatment arm and centerâ€level variations in cost and inpatient days on the phase <scp>III</scp> highâ€risk B acute lymphoblastic leukemia trial <scp>AALL</scp> 0232. Cancer Medicine, 2018, 7, 3-12.	2.8	13
166	Excellent Event Free (EFS) and Overall Survival (OS) For Children With Standard Risk Acute Lymphoblastic Leukemia (SR ALL) Despite The Absence Of a Significant Impact On Outcome With The Addition Of An Intensified Consolidation: Results Of Children's Oncology Group (COG) AALL0331. Blood, 2013, 122, 837-837.	1.4	13
167	TREATMENT Toxicity in Adolescents and Young ADULT (AYA) PATIENTS COMPARED with Younger PATIENTS TREATED for HIGH RISK B-Precursor ACUTE LYMPHOBLASTIC LEUKEMIA (HR-ALL): A REPORT From the CHILDREN'S Oncology GROUP STUDY AALL0232. Blood, 2011, 118, 1510-1510.	1.4	12
168	Sexâ€based disparities in outcome in pediatric acute lymphoblastic leukemia: a Children's Oncology Group report. Cancer, 2022, 128, 1863-1870.	4.1	12
169	The Functional Role of PRC2 in Early T-cell Precursor Acute Lymphoblastic Leukemia (ETP-ALL) – Mechanisms and Opportunities. Frontiers in Pediatrics, 2016, 4, 49.	1.9	11
170	Outstanding outcomes in infants with <i>KMT2A</i> -germline acute lymphoblastic leukemia treated with chemotherapy alone: results of the Children's Oncology Group AALL0631 trial. Haematologica, 2022, 107, 1205-1208.	3.5	11
171	Validation of Minimal Residual Disease as Surrogate Endpoint for Event-Free Survival in Childhood Acute Lymphoblastic Leukemia. JNCI Cancer Spectrum, 2018, 2, pky069.	2.9	10
172	Late isolated central nervous system relapse in childhood Bâ€cell acute lymphoblastic leukemia treated with intensified systemic therapy and delayed reduced dose cranial radiation: A report from the Children's Oncology Group study AALL02P2. Pediatric Blood and Cancer, 2021, 68, e29256.	1.5	10
173	Molecular Mechanisms of <i>ARID5B-</i> Mediated Genetic Susceptibility to Acute Lymphoblastic Leukemia. Journal of the National Cancer Institute, 2022, 114, 1287-1295.	6.3	10
174	Cytogenetic abnormalities in a case of botryoid rhabdomyosarcoma. , 2000, 34, 293-295.		9
175	Dysregulated transcriptional networks in KMT2A- and MLLT10-rearranged T-ALL. Biomarker Research, 2018, 6, 27.	6.8	9
176	Evolution of the Epigenetic Landscape in Childhood B Acute Lymphoblastic Leukemia and Its Role in Drug Resistance. Cancer Research, 2020, 80, 5189-5202.	0.9	9
177	Genome-Wide Association Study of Susceptibility Loci for <i>TCF3-PBX1</i> Acute Lymphoblastic Leukemia in Children. Journal of the National Cancer Institute, 2021, 113, 933-937.	6.3	9
178	Prognostic impact of minimal residual disease at the end of consolidation in NCI standardâ€risk Bâ€lymphoblastic leukemia: A report from the Children's Oncology Group. Pediatric Blood and Cancer, 2021, 68, e28929.	1.5	9
179	Anti-CD7 CAR T cells for T-ALL: impressive early-stage efficacy. Nature Reviews Clinical Oncology, 2021, 18, 677-678.	27.6	9
180	Outcomes of dasatinib plus intensive chemotherapy or stem cell transplant (SCT) for Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) on Children's Oncology Group AALL0622 Journal of Clinical Oncology, 2015, 33, 10006-10006.	1.6	9

#	Article	IF	CITATIONS
181	No evidence that G6PD deficiency affects the efficacy or safety of daunorubicin in acute lymphoblastic leukemia induction therapy. Pediatric Blood and Cancer, 2019, 66, e27681.	1.5	8
182	Randomized assessment of delayed intensification and two methods for parenteral methotrexate delivery in childhood B-ALL: Children's Oncology Group Studies P9904 and P9905. Leukemia, 2020, 34, 1006-1016.	7.2	8
183	Induction Toxicities Are More Frequent in Young Adults Compared to Children Treated on the Children's Oncology Group (COG) First Relapse B-Lymphoblastic Leukemia Clinical Trial AALL1331. Blood, 2018, 132, 1382-1382.	1.4	8
184	Acute Lymphoblastic Leukemia in Children with Down Syndrome: A Report From the Ponte Di Legno Study Group,. Blood, 2011, 118, 3579-3579.	1.4	8
185	A Randomized Phase 3 Trial of Blinatumomab Vs. Chemotherapy As Post-Reinduction Therapy in Low Risk (LR) First Relapse of B-Acute Lymphoblastic Leukemia (B-ALL) in Children and Adolescents/Young Adults (AYAs): A Report from Children's Oncology Group Study AALL1331. Blood, 2021, 138, 363-363.	1.4	8
186	More Is Not Always Better: The Perils of Treatment Intensification in Pediatric Acute Lymphoblastic Leukemia. Journal of Clinical Oncology, 2019, 37, 1601-1603.	1.6	7
187	Class II Human Leukocyte Antigen Variants Associate With Risk of Pegaspargase Hypersensitivity. Clinical Pharmacology and Therapeutics, 2021, 110, 794-802.	4.7	7
188	Triple Intrathecal Therapy (Methotrexate/Hydrocortisone/Cytarabine) Does Not Improve Disease-Free Survival Versus Intrathecal Methotrexate Alone in Children with High Risk B-Lymphoblastic Leukemia: Results of Children's Oncology Group Study AALL1131. Blood, 2018, 132, 35-35.	1.4	7
189	Outcomes in children with Down syndrome (DS) and B-lymphoblastic leukemia (B-ALL): A Children's Oncology Group (COG) report Journal of Clinical Oncology, 2020, 38, 10510-10510.	1.6	7
190	Pediatric Somatic Tumor Sequencing Identifies Underlying Cancer Predisposition. JCO Precision Oncology, 2019, 3, 1-26.	3.0	6
191	Aurora A kinase as a target for therapy in <i>TCF3-HLF</i> rearranged acute lymphoblastic leukemia. Haematologica, 2021, 106, 2990-2994.	3.5	6
192	Excellent Outcomes with Reduced Frequency of Vincristine and Dexamethasone Pulses in Children with National Cancer Institute (NCI) Standard-Risk B Acute Lymphoblastic Leukemia (SR B-ALL): A Report from Children's Oncology Group (COG) Study AALL0932. Blood, 2019, 134, 824-824.	1.4	6
193	Feasibility of intensive post-Induction therapy incorporating clofarabine (CLOF) in the very high risk (VHR) stratum of patients with newly diagnosed high risk B-lymphoblastic leukemia (HR B-ALL): Children's Oncology Group AALL1131 Journal of Clinical Oncology, 2015, 33, 10007-10007.	1.6	6
194	Genetic Variation in NFATC2 Is Associated with a Higher Risk of Asparaginase Allergy. Blood, 2014, 124, 63-63.	1.4	6
195	JAK3 mutations and mitochondrial apoptosis resistance in T-cell acute lymphoblastic leukemia. Leukemia, 2022, 36, 1499-1507.	7.2	6
196	Molecular characterization and clinical outcome of B-cell precursor acute lymphoblastic leukemia with IG-MYC rearrangement. Haematologica, 2023, 108, 717-731.	3.5	6
197	Persistence of Chemotherapy-Induced Peripheral Neuropathy Despite Vincristine Reduction in Childhood B-Acute Lymphoblastic Leukemia. Journal of the National Cancer Institute, 2022, 114, 1167-1175.	6.3	6
198	CML in blast crisis: more common than we think?. Blood, 2017, 129, 2713-2714.	1.4	5

#	Article	IF	CITATIONS
199	Recent trends in the results of studies conducted by the Children's Oncology Group acute lymphoblastic leukemia committee and implications for emerging cooperative trial groups in low- and middle-income countries. Pediatric Hematology Oncology Journal, 2020, 5, 151-155.	0.1	5
200	Understanding Adolescent and Young Adult 6-Mercaptopurine Adherence and mHealth Engagement During Cancer Treatment: Protocol for Ecological Momentary Assessment. JMIR Research Protocols, 2021, 10, e32789.	1.0	5
201	A Genome-Wide Analysis of Variants Influencing Methotrexate Clearance Replicates SLCO1B1 Blood, 2012, 120, 2466-2466.	1.4	5
202	Genetic and Response-Based Risk Classification Identifies a Subgroup of NCI High Risk Childhood B-Lymphoblastic Leukemia (HR B-ALL) with Outstanding Outcomes: A Report from the Children's Oncology Group (COG). Blood, 2015, 126, 807-807.	1.4	5
203	Genomic Landscape of Pediatric Mixed Phenotype Acute Leukemia. Blood, 2016, 128, 454-454.	1.4	4
204	Acquisition of p16INK4Aandp15INK4BGene Abnormalities Between Initial Diagnosis and Relapse in Children With Acute Lymphoblastic Leukemia. Blood, 1999, 93, 2380-2385.	1.4	4
205	Association of intravenous (IV) and intramuscular (IM) pegaspargase (PEG) administration with rate of adverse events (AE) in standard risk (SR) Acute Lymphoblastic Leukemia (ALL) Children's Oncology Group (COG) trials Journal of Clinical Oncology, 2015, 33, 10035-10035.	1.6	4
206	Impact of asparaginase discontinuation on outcome in childhood ALL: A report from the Children's Oncology Group (COG) Journal of Clinical Oncology, 2019, 37, 10005-10005.	1.6	4
207	Impact of risk-stratified therapy on health status in survivors of childhood Acute Lymphoblastic Leukemia: a report from the Childhood Cancer Survivor Study. Cancer Epidemiology Biomarkers and Prevention, 2021, , cebp.0667.2021.	2.5	4
208	IKZF1 and 22q11.22 Deletions and PDGFRA Gains Are Associated with Poor Outcome in Down Syndrome Acute Lymphoblastic Leukemia. Blood, 2012, 120, 289-289.	1.4	4
209	Genetics of osteonecrosis in pediatric acute lymphoblastic leukemia and general populations. Blood, 2021, 137, 1550-1552.	1.4	3
210	Minimal residual disease at end of induction and consolidation remain important prognostic indicators for newly diagnosed children and young adults with very high-risk (VHR) B-lymphoblastic leukemia (B-ALL): Children's Oncology Group AALL1131 Journal of Clinical Oncology, 2021, 39, 10004-10004.	1.6	3
211	Genomic and clinical characterization of early T-cell precursor lymphoblastic lymphoma. Blood Advances, 2021, 5, 2890-2900.	5.2	3
212	Matched Targeted Therapy for Pediatric Patients with Relapsed, Refractory or High-Risk Leukemias: A Report from the LEAP Consortium. Blood, 2018, 132, 261-261.	1.4	3
213	Improved Post-Induction Chemotherapy Does Not Abrogate Prognostic Significance of Minimal Residual Disease (MRD) for Children and Young Adults with High Risk Acute Lymphoblastic Leukemia (ALL). A Report From Children's Oncology Group (COG) Study AALL0232. Blood, 2011, 118, 1440-1440.	1.4	3
214	Germline Genetic Variation in IKZF1 and Predisposition to Childhood Acute Lymphoblastic Leukemia. Blood, 2016, 128, LBA-2-LBA-2.	1.4	3
215	Plasma asparaginase activity and asparagine depletion in patients with acute lymphoblastic leukemia (ALL) treated with pegaspargase (SS-PEG <i>E. coli</i> L-asparaginase): Results from Children's Oncology Group (COG) study AALL07P4 Journal of Clinical Oncology, 2016, 34, 10508-10508.	1.6	3
216	Association of higher lung dose received during total body irradiation for allogeneic hematopoetic stem cell transplantation in children with acute lymphoblastic leukemia with inferior progression-free and overall survival: A report from the Children's Oncology Group Journal of Clinical Oncology, 2015, 33, 10030-10030.	1.6	3

#	Article	IF	CITATIONS
217	Outcomes with reduced intensity therapy in a low-risk subset of children with National Cancer Institute (NCI) standard-risk (SR) B-lymphoblastic leukemia (B-ALL): A report from Children's Oncology Group (COG) AALL0932 Journal of Clinical Oncology, 2020, 38, 10509-10509.	1.6	3
218	Racial, Ethnic, and Socioeconomic Factors Result in Disparities in Outcome Among Children with Acute Lymphoblastic Leukemia Not Fully Attenuated By Disease Prognosticators: A Children's Oncology Group (COG) Study. Blood, 2021, 138, 211-211.	1.4	3
219	Reply to: Obesity is an important health problem in survivors of pediatric acute lymphoblastic leukemia. Pediatric Blood and Cancer, 2015, 62, 2057-2057.	1.5	2
220	Reply to I.J. Cohen. Journal of Clinical Oncology, 2017, 35, 3989-3991.	1.6	2
221	Integrated Risk Stratification Using Minimal Residual Disease and Sentinel Genetic Alterations in Pediatric Acute Lymphoblastic Leukemia. Journal of Clinical Oncology, 2018, 36, 4-6.	1.6	2
222	Predicting Clinical Dose-Exposure and Exposure-Response Relationships of Pan-Antiapoptotic BCL-2 Family Inhibitor Obatoclax in MLL Rearranged Infant Leukemias From Preclinical Disease Models and Adult Experience. Blood, 2011, 118, 2580-2580.	1.4	2
223	Residual Disease Monitoring By High Throughput Sequencing Provides Risk Stratification in Childhood B-ALL and Identifies a Novel Subset of Patients Having Poor Outcome. Blood, 2016, 128, 1086-1086.	1.4	2
224	iAMP21 Is Associated with Inferior Outcomes in Children with Acute Lymphoblastic Leukemia (ALL) on Contemporary Children's Oncology Group (COG) Studies. Blood, 2011, 118, 739-739.	1.4	2
225	SIOP Strategy 2021–2025: Cure for more, care for all. Pediatric Blood and Cancer, 2022, 69, e29577.	1.5	2
226	ABL-class fusion positive acute lymphoblastic leukemia: can targeting ABL cure ALL?. Haematologica, 2020, 105, 1754-1757.	3.5	1
227	Abstract 3028: Integrative genomics reveals IncRNAs associated with pediatric cancer. , 2021, , .		1
228	HLA-DRB1*07:01 Is Associated With Asparaginase Allergies In Children With Acute Lymphoblastic Leukemia. Blood, 2013, 122, 60-60.	1.4	1
229	PRC2 Mutations Induce Resistance to Conventional Chemotherapy By Inhibiting Mitochondrial Apoptosis in T-Cell Acute Lymphoblastic Leukemia. Blood, 2016, 128, 604-604.	1.4	1
230	Minimal Residual Disease Assessment of Remission after Induction Therapy Is Superior to Morphologic Assessment for Risk Stratification in Childhood Acute Lymphoblastic Leukemia: A Report from the Children's Oncology Group (COG). Blood, 2016, 128, 758-758.	1.4	1
231	Matched targeted therapy for pediatric patients with relapsed, refractory or high-risk leukemias: A report from the LEAP consortium Journal of Clinical Oncology, 2018, 36, 10518-10518.	1.6	1
232	Development and Refinement of Augmented Treatment Regimens for Pediatric High-Risk Acute Lymphoblastic Leukemia. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2012, , 611-615.	3.8	1
233	A Genome-Wide Association Study of Susceptibility to Acute Lymphoblastic Leukemia in Adolescents and Young Adults. Blood, 2014, 124, 132-132.	1.4	1
234	Significant In Vivo Sensitivity to Aurora Kinase Inhibition in TCF3-Hlf rearranged Acute Lymphoblastic Leukemia. Blood, 2018, 132, 4026-4026.	1.4	1

#	Article	IF	CITATIONS
235	Clinical significance of serial tumor next generation sequencing (NGS) in 155 pediatric cancer patients Journal of Clinical Oncology, 2020, 38, e13666-e13666.	1.6	1
236	Assessment of the impact of inpatient infectious events in pediatric patients with newly diagnosed acute leukemia at Dr. Robert Reid Cabral Children's Hospital, Dominican Republic. PLoS ONE, 2020, 15, e0243795.	2.5	1
237	Intensification of Chemotherapy Using a Modified BFM Backbone for Children, Adolescents and Young Adults with T-Cell Acute Lymphoblastic Leukemia (T-ALL) and T-Cell Lymphoblastic Lymphoma (T-LL) Identifies Highly Chemorefractory Patients Who Benefit from Allogeneic Hematopoietic Stem Cell Transplantation Blood 2021 138 3487-3487	1.4	1
238	Minimal residual disease comparison between Ig/TCR PCR versus NGS assays in children with Philadelphia chromosome-positive acute lymphoblastic leukemia: A report from the COG AALL1631 study Journal of Clinical Oncology, 2022, 40, 10023-10023.	1.6	1
239	Introduction and overview to issue on new developments in pediatric hematology/oncology. Current Opinion in Pediatrics, 2014, 26, 1-2.	2.0	Ο
240	The ASPHO 2018 Distinguished Career Award goes to Dr. Michael P. Link. Pediatric Blood and Cancer, 2018, 65, e26987.	1.5	0
241	1681. Assessment of the Impact of Infectious Events in a Cohort of Pediatric Leukemia Patients in the Dominican Republic. Open Forum Infectious Diseases, 2019, 6, S615-S616.	0.9	Ο
242	The ASPHO 2020 distinguished career award goes to Dr Garrett M. Brodeur. Pediatric Blood and Cancer, 2020, 67, e28191.	1.5	0
243	Reply to A. K. Agrawal et al. Journal of Clinical Oncology, 2021, 39, 695-696.	1.6	0
244	Targeted gene expression classifier identifies pediatric T-cell acute lymphoblastic leukemia (T-ALL) patients at high risk for end induction minimal residual disease positivity Journal of Clinical Oncology, 2021, 39, 10002-10002.	1.6	0
245	Prognostic Impact of CNS-2 status in T-ALL: A report from the Children's Oncology Group Journal of Clinical Oncology, 2021, 39, 10003-10003.	1.6	Ο
246	Targeted Microarray Analyses Augment the Clinical Cytogenetic Diagnosis of Acute Lymphoblastic Leukemia (ALL): Submicroscopic Genetic Events Improve Diagnosis, Contribute to Risk Stratification, and Provide Genetic Markers for Minimal Residual Disease (MRD) Testing. Blood, 2010, 116, 2690-2690.	1.4	0
247	MLL Rearrangement and Age At Diagnosis Are Strongly Associated with High Level Surface FLT3 Expression and Ex Vivo Sensitivity to FLT3 Inhibition: A Prospective Analysis of 54 Consecutive Infants with ALL Enrolled in Children's Oncology Group (COG) Trial AALL0631. Blood, 2011, 118, 568-568.	1.4	Ο
248	Discovery of Novel Recurrent Mutations in Childhood Early T-Cell Precursor Acute Lymphoblastic Leukemia by Whole Genome Sequencing - a Report From the St Jude Children's Research Hospital - Washington University Pediatric Cancer Genome Project. Blood, 2011, 118, 68-68.	1.4	0
249	In vivo monitoring of JAK/STAT and PI3K/mTOR signal transduction inhibition in pediatric CRLF2-rearranged acute lymphoblastic leukemia (ALL) Journal of Clinical Oncology, 2012, 30, 9506-9506.	1.6	0
250	Risk Factors For Acute Pancreatitis In Patients With Acute Lymphoblastic Leukemia. Blood, 2013, 122, 3868-3868.	1.4	0
251	Deciphering the Epigenetic Landscape of Relapsed Pediatric Acute Lymphoblastic Leukemia. Blood, 2014, 124, 612-612.	1.4	0
252	Cryptic Truncating Rearrangements of the Erythropoietin Receptor in Ph-like Acute Lymphoblastic Leukemia. Blood, 2014, 124, 128-128.	1.4	0

#	Article	IF	CITATIONS
253	Self-Enforcing Feedback Activation Between BCL6 and Tonic Pre-B Cell Receptor Signaling in Acute Lymphoblastic Leukemia. Blood, 2014, 124, 284-284.	1.4	0
254	Neurocognitive function of children treated for high-risk B-acute lymphoblastic leukemia (HR-ALL) randomized to Capizzi (CMTX) versus high-dose methotrexate (HDMTX): A report from the Children's Oncology Group (COG) Journal of Clinical Oncology, 2015, 33, 10002-10002.	1.6	0
255	Targeted Activation of B Cell Autoimmunity Checkpoints in Acute Lymphoblastic Leukemia. Blood, 2015, 126, 3716-3716.	1.4	0
256	New Insights into Deregulated Gene Expression Pathways in MLL- and AF10-Rearranged T-Lineage Acute Lymphoblastic Leukemia. Blood, 2016, 128, 2906-2906.	1.4	0
257	Chronic health conditions (CHC) and late mortality in survivors of acute lymphoblastic leukemia (ALL) in the Childhood Cancer Survivor Study Journal of Clinical Oncology, 2019, 37, 10016-10016.	1.6	0
258	Gene expression signature associated with in vitro dexamethasone resistance and post-induction minimal residual disease in pediatric T-cell acute lymphoblastic leukemia Journal of Clinical Oncology, 2019, 37, 10033-10033.	1.6	0
259	Comparison of chemotherapy dose intensity for AYAs on COG AALL1131 versus CALGB 10403 Journal of Clinical Oncology, 2020, 38, 10520-10520.	1.6	0
260	Effects of age, obesity, and body surface area on asparaginase-associated toxicities during acute lymphoblastic leukemia induction therapy: A report from the Children's Oncology Group Journal of Clinical Oncology, 2022, 40, 7000-7000.	1.6	0