
Christopher D Morrison

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5025173/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regulation of body weight: Lessons learned from bariatric surgery. Molecular Metabolism, 2023, 68, 101517.	3.0	17
2	Isocaloric low protein diet in a mouse model for vanishing white matter does not impact ISR deregulation in brain, but reveals ISR deregulation in liver. Nutritional Neuroscience, 2022, 25, 1219-1230.	1.5	2
3	Organization of sympathetic innervation of interscapular brown adipose tissue in the mouse. Journal of Comparative Neurology, 2022, 530, 1363-1378.	0.9	12
4	Lateral hypothalamic galanin neurons are activated by stress and blunt anxiety-like behavior in mice. Behavioural Brain Research, 2022, 423, 113773.	1.2	4
5	Dynamic effects of dietary protein restriction on body weights, food consumption, and protein preference in <scp>C57BL</scp> /6J and <scp><i>Fgf21</i>â€KO</scp> mice. Journal of the Experimental Analysis of Behavior, 2022, 117, 346-362.	0.8	2
6	FGF21 is required for protein restriction to extend lifespan and improve metabolic health in male mice. Nature Communications, 2022, 13, 1897.	5.8	41
7	Sympathetic innervation of inguinal white adipose tissue in the mouse. Journal of Comparative Neurology, 2021, 529, 1465-1485.	0.9	30
8	Physiologic Responses to Dietary Sulfur Amino Acid Restriction in Mice Are Influenced by Atf4 Status and Biological Sex. Journal of Nutrition, 2021, 151, 785-799.	1.3	24
9	IGFBP-2 partly mediates the early metabolic improvements caused by bariatric surgery. Cell Reports Medicine, 2021, 2, 100248.	3.3	18
10	Learning of food preferences: mechanisms and implications for obesity & metabolic diseases. International Journal of Obesity, 2021, 45, 2156-2168.	1.6	36
11	FGF21 prevents low-protein diet-induced renal inflammation in aged mice. American Journal of Physiology - Renal Physiology, 2021, 321, F356-F368.	1.3	8
12	Leptin receptor signaling is required for intact hypoglycemic counterregulation: A study in male Zucker rats. Journal of Diabetes and Its Complications, 2021, 35, 107994.	1.2	1
13	Leptin treatment prevents impaired hypoglycemic counterregulation induced by exposure to severe caloric restriction or exposure to recurrent hypoglycemia. Autonomic Neuroscience: Basic and Clinical, 2021, 235, 102853.	1.4	1
14	Protein Appetite at the Interface between Nutrient Sensing and Physiological Homeostasis. Nutrients, 2021, 13, 4103.	1.7	11
15	Targeting the T-type calcium channel Cav3.2 in GABAergic arcuate nucleus neurons to treat obesity. Molecular Metabolism, 2021, 54, 101391.	3.0	5
16	The Nuanced Metabolic Functions of Endogenous FGF21 Depend on the Nature of the Stimulus, Tissue Source, and Experimental Model. Frontiers in Endocrinology, 2021, 12, 802541.	1.5	17
17	FGF21, not GCN2, influences bone morphology due to dietary protein restrictions. Bone Reports, 2020, 12, 100241.	0.2	1
18	Response of Liver Metabolic Pathways to Ketogenic Diet and Exercise Are Not Additive. Medicine and Science in Sports and Exercise, 2020, 52, 37-48.	0.2	5

#	Article	IF	CITATIONS
19	The obesity epidemic in the face of homeostatic body weight regulation: What went wrong and how can it be fixed?. Physiology and Behavior, 2020, 222, 112959.	1.0	31
20	What Should I Eat and Why? The Environmental, Genetic, and Behavioral Determinants of Food Choice: Summary from a Pennington Scientific Symposium. Obesity, 2020, 28, 1386-1396.	1.5	12
21	Consuming a ketogenic diet leads to altered hypoglycemic counter-regulation in mice. Journal of Diabetes and Its Complications, 2020, 34, 107557.	1.2	9
22	FGF21 and the Physiological Regulation of Macronutrient Preference. Endocrinology, 2020, 161, .	1.4	57
23	Recent advances in understanding the role of leptin in energy homeostasis. F1000Research, 2020, 9, 451.	0.8	24
24	The Protein Leverage Hypothesis: A 2019 Update for <i>Obesity</i> . Obesity, 2019, 27, 1221-1221.	1.5	10
25	Gastric bypass surgery in lean adolescent mice prevents diet-induced obesity later in life. Scientific Reports, 2019, 9, 7881.	1.6	4
26	FGF21 Signals Protein Status to the Brain and Adaptively Regulates Food Choice and Metabolism. Cell Reports, 2019, 27, 2934-2947.e3.	2.9	143
27	Sympathetic innervation of the interscapular brown adipose tissue in mouse. Annals of the New York Academy of Sciences, 2019, 1454, 3-13.	1.8	44
28	Combined loss of GLP-1R and Y2R does not alter progression of high-fat diet-induced obesity or response to RYGB surgery in mice. Molecular Metabolism, 2019, 25, 64-72.	3.0	31
29	The PYY/Y2R-Deficient Mouse Responds Normally to High-Fat Diet and Gastric Bypass Surgery. Nutrients, 2019, 11, 585.	1.7	35
30	Activation of hepatic estrogen receptor- \hat{l}_{\pm} increases energy expenditure by stimulating the production of fibroblast growth factor 21 in female mice. Molecular Metabolism, 2019, 22, 62-70.	3.0	32
31	Dietary branched chain amino acids and metabolic health: when less is more. Journal of Physiology, 2018, 596, 555-556.	1.3	9
32	Roux-en-Y Gastric Bypass Surgery-Induced Weight Loss and Metabolic Improvements Are Similar in TGR5-Deficient and Wildtype Mice. Obesity Surgery, 2018, 28, 3227-3236.	1.1	30
33	Fibroblast growth factor 21, adiposity, and macronutrient balance in a healthy, pregnant population with overweight and obesity. Endocrine Research, 2018, 43, 275-283.	0.6	8
34	Glial acetate metabolism is increased following a 72-h fast in metabolically healthy men and correlates with susceptibility to hypoglycemia. Acta Diabetologica, 2018, 55, 1029-1036.	1.2	2
35	Homeostatic sensing of dietary protein restriction: A case for FGF21. Frontiers in Neuroendocrinology, 2018, 51, 125-131.	2.5	51
36	Preoptic leptin signaling modulates energy balance independent of body temperature regulation. ELife, 2018, 7, .	2.8	28

#	Article	IF	CITATIONS
37	Blaming the Brain for Obesity: Integration of Hedonic and Homeostatic Mechanisms. Gastroenterology, 2017, 152, 1728-1738.	0.6	263
38	RYGB Produces more Sustained Body Weight Loss and Improvement of Glycemic Control Compared with VSG in the Diet-Induced Obese Mouse Model. Obesity Surgery, 2017, 27, 2424-2433.	1.1	39
39	Galanin-Expressing GABA Neurons in the Lateral Hypothalamus Modulate Food Reward and Noncompulsive Locomotion. Journal of Neuroscience, 2017, 37, 6053-6065.	1.7	80
40	Low protein-induced increases in FGF21 drive UCP1-dependent metabolic but not thermoregulatory endpoints. Scientific Reports, 2017, 7, 8209.	1.6	79
41	Quantifying Biochemical Alterations in Brown and Subcutaneous White Adipose Tissues of Mice Using Fourier Transform Infrared Widefield Imaging. Frontiers in Endocrinology, 2017, 8, 121.	1.5	7
42	Hedonics Act in Unison with the Homeostatic System to Unconsciously Control Body Weight. Frontiers in Nutrition, 2016, 3, 6.	1.6	25
43	Eating in mice with gastric bypass surgery causes exaggerated activation of brainstem anorexia circuit. International Journal of Obesity, 2016, 40, 921-928.	1.6	31
44	Body Composition, Food Intake, and Energy Expenditure in a Murine Model of Roux-en-Y Gastric Bypass Surgery. Obesity Surgery, 2016, 26, 2173-2182.	1.1	44
45	Glutamatergic Preoptic Area Neurons That Express Leptin Receptors Drive Temperature-Dependent Body Weight Homeostasis. Journal of Neuroscience, 2016, 36, 5034-5046.	1.7	108
46	Roux-en-Y gastric bypass surgery is effective in fibroblast growth factor-21 deficient mice. Molecular Metabolism, 2016, 5, 1006-1014.	3.0	20
47	Defining the Nutritional and Metabolic Context of FGF21ÂUsing the Geometric Framework. Cell Metabolism, 2016, 24, 555-565.	7.2	164
48	Metabolic Responses to Dietary Protein Restriction Require an Increase in FGF21 that Is Delayed by the Absence of GCN2. Cell Reports, 2016, 16, 707-716.	2.9	146
49	Does gastric bypass surgery change body weight set point?. International Journal of Obesity Supplements, 2016, 6, S37-S43.	12.5	15
50	Reprogramming of defended body weight after <scp>R</scp> ouxâ€Enâ€ <scp>Y</scp> gastric bypass surgery in dietâ€induced obese mice. Obesity, 2016, 24, 654-660.	1.5	34
51	Hepatic autophagy contributes to the metabolic response to dietary protein restriction. Metabolism: Clinical and Experimental, 2016, 65, 805-815.	1.5	24
52	Raised FGF-21 and Triglycerides Accompany Increased Energy Intake Driven by Protein Leverage in Lean, Healthy Individuals: A Randomised Trial. PLoS ONE, 2016, 11, e0161003.	1.1	34
53	Protein-dependent regulation of feeding and metabolism. Trends in Endocrinology and Metabolism, 2015, 26, 256-262.	3.1	78
54	In vivo effects of dietary quercetin and quercetin-rich red onion extract on skeletal muscle mitochondria, metabolism, and insulin sensitivity. Genes and Nutrition, 2015, 10, 451.	1.2	66

#	Article	IF	CITATIONS
55	Leptin modulates nutrient reward via inhibitory galanin action on orexin neurons. Molecular Metabolism, 2015, 4, 706-717.	3.0	63
56	Neural Control of Energy Expenditure. Handbook of Experimental Pharmacology, 2015, 233, 173-194.	0.9	36
57	Structure, production and signaling of leptin. Metabolism: Clinical and Experimental, 2015, 64, 13-23.	1.5	307
58	Leptin receptor neurons in the dorsomedial hypothalamus are key regulators of energy expenditure and body weight, but not food intake. Molecular Metabolism, 2014, 3, 681-693.	3.0	165
59	Reversible hyperphagia and obesity in rats with gastric bypass by central MC3/4R blockade. Obesity, 2014, 22, 1847-1853.	1.5	17
60	Leucine acts in the brain to suppress food intake but does not function as a physiological signal of low dietary protein. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 307, R310-R320.	0.9	48
61	GLP-1 receptor signaling is not required for reduced body weight after RYGB in rodents. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 306, R352-R362.	0.9	157
62	FGF21 is an endocrine signal of protein restriction. Journal of Clinical Investigation, 2014, 124, 3913-3922.	3.9	451
63	Remodeling of Lipid Metabolism by Dietary Restriction of Essential Amino Acids. Diabetes, 2013, 62, 2635-2644.	0.3	46
64	Amino acidâ€dependent regulation of food intake: is protein more than the sum of its parts?. Journal of Physiology, 2013, 591, 5417-5418.	1.3	3
65	Leptin receptor neurons in the mouse hypothalamus are colocalized with the neuropeptide galanin and mediate anorexigenic leptin action. American Journal of Physiology - Endocrinology and Metabolism, 2013, 304, E999-E1011.	1.8	82
66	Impaired branched chain amino acid metabolism alters feeding behavior and increases orexigenic neuropeptide expression in the hypothalamus. Journal of Endocrinology, 2012, 212, 85-94.	1.2	24
67	Homeostatic regulation of protein intake: in search of a mechanism. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 302, R917-R928.	0.9	77
68	Capricious Cre: The Devil Is in the Details. Endocrinology, 2012, 153, 1005-1007.	1.4	15
69	Neural and metabolic regulation of macronutrient intake and selection. Proceedings of the Nutrition Society, 2012, 71, 390-400.	0.4	71
70	Cognitive impairment following high fat diet consumption is associated with brain inflammation. Journal of Neuroimmunology, 2010, 219, 25-32.	1.1	502
71	Innervation of skeletal muscle by leptin receptor-containing neurons. Brain Research, 2010, 1345, 146-155.	1.1	15
72	NOX activity in brain aging: Exacerbation by high fat diet. Free Radical Biology and Medicine, 2010, 49, 22-30.	1.3	56

#	Article	IF	CITATIONS
73	Intersection between metabolic dysfunction, high fat diet consumption, and brain aging. Journal of Neurochemistry, 2010, 114, 344-361.	2.1	86
74	High fat diet increases hippocampal oxidative stress and cognitive impairment in aged mice: implications for decreased Nrf2 signaling. Journal of Neurochemistry, 2010, 114, 1581-1589.	2.1	235
75	Decreased food intake following overfeeding involves leptin-dependent and leptin-independent mechanisms. Physiology and Behavior, 2010, 100, 408-416.	1.0	29
76	Maternal obesity is necessary for programming effect of high-fat diet on offspring. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R1464-R1472.	0.9	164
77	HF diets increase hypothalamic PTP1B and induce leptin resistance through both leptin-dependent and -independent mechanisms. American Journal of Physiology - Endocrinology and Metabolism, 2009, 296, E291-E299.	1.8	117
78	Effects of high fat diet on Morris maze performance, oxidative stress, and inflammation in rats: Contributions of maternal diet. Neurobiology of Disease, 2009, 35, 3-13.	2.1	218
79	Implications of crosstalk between leptin and insulin signaling during the development of diet-induced obesity. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2009, 1792, 409-416.	1.8	60
80	Obesity and vulnerability of the CNS. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2009, 1792, 395-400.	1.8	161
81	Leptin signaling in brain: A link between nutrition and cognition?. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2009, 1792, 401-408.	1.8	164
82	Leptin resistance and the response to positive energy balance. Physiology and Behavior, 2008, 94, 660-663.	1.0	37
83	The Brain, Appetite, and Obesity. Annual Review of Psychology, 2008, 59, 55-92.	9.9	546
84	Interaction Between Exercise and Leptin in the Treatment of Obesity. Diabetes, 2008, 57, 534-535.	0.3	7
85	Effects of Chromium Picolinate on Food Intake and Satiety. Diabetes Technology and Therapeutics, 2008, 10, 405-412.	2.4	43
86	Increased Hypothalamic Protein Tyrosine Phosphatase 1B Contributes to Leptin Resistance with Age. Endocrinology, 2007, 148, 433-440.	1.4	100
87	Amino acids inhibit Agrp gene expression via an mTOR-dependent mechanism. American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E165-E171.	1.8	151
88	Neurobiology of Nutrition and Obesity. Nutrition Reviews, 2007, 65, 517-534.	2.6	31
89	Insulin action in the brain contributes to glucose lowering during insulin treatment of diabetes. Cell Metabolism, 2006, 3, 67-73.	7.2	156
90	Endocrine responses in mares undergoing abrupt changes in nutritional management. Journal of Animal Science, 2006, 84, 2700-2707.	0.2	9

#	Article	IF	CITATIONS
91	Orexin inputs to caudal raphé neurons involved in thermal, cardiovascular, and gastrointestinal regulation. Histochemistry and Cell Biology, 2005, 123, 147-156.	0.8	108
92	Leptin inhibits hypothalamic Npy and Agrp gene expression via a mechanism that requires phosphatidylinositol 3-OH-kinase signaling. American Journal of Physiology - Endocrinology and Metabolism, 2005, 289, E1051-E1057.	1.8	186
93	Selective Tissue Uptake of Agouti-Related Protein(82–131) and Its Modulation by Fasting. Endocrinology, 2005, 146, 5533-5539.	1.4	14
94	Leptin regulates insulin sensitivity via phosphatidylinositol-3-OH kinase signaling in mediobasal hypothalamic neurons. Cell Metabolism, 2005, 2, 411-420.	7.2	253
95	The Agouti-related protein and its role in energy homeostasis. Peptides, 2005, 26, 1771-1781.	1.2	67
96	Melanin concentrating hormone innervation of caudal brainstem areas involved in gastrointestinal functions and energy balance. Neuroscience, 2005, 135, 611-625.	1.1	59
97	Effect of Uncontrolled Diabetes on Plasma Ghrelin Concentrations and Ghrelin-Induced Feeding. Endocrinology, 2004, 145, 4575-4582.	1.4	67
98	Insulin Activation of Phosphatidylinositol 3-Kinase in the Hypothalamic Arcuate Nucleus: A Key Mediator of Insulin-Induced Anorexia. Diabetes, 2003, 52, 227-231.	0.3	441
99	Neurobiology of Nutrition and Obesity. Nutrition Reviews, 0, 65, 517-534.	2.6	46