Luisa Cigliano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5025108/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Loss of circadian rhythmicity in bdnf knockout zebrafish larvae. IScience, 2022, 25, 104054.	1.9	11
2	Gut and liver metabolic responses to dietary fructose – are they reversible or persistent after switching to a healthy diet?. Food and Function, 2021, 12, 7557-7568.	2.1	4
3	Fructose Removal from the Diet Reverses Inflammation, Mitochondrial Dysfunction, and Oxidative Stress in Hippocampus. Antioxidants, 2021, 10, 487.	2.2	12
4	Prolonged Changes in Hepatic Mitochondrial Activity and Insulin Sensitivity by High Fructose Intake in Adolescent Rats. Nutrients, 2021, 13, 1370.	1.7	7
5	Prenatal Exposure to BPA: The Effects on Hepatic Lipid Metabolism in Male and Female Rat Fetuses. Nutrients, 2021, 13, 1970.	1.7	16
6	Effects of Late-Life Caloric Restriction on Age-Related Alterations in the Rat Cortex and Hippocampus. Nutrients, 2021, 13, 232.	1.7	4
7	Sweet but Bitter: Focus on Fructose Impact on Brain Function in Rodent Models. Nutrients, 2021, 13, 1.	1.7	155
8	Brain Nrf2 pathway, autophagy, and synaptic function proteins are modulated by a short-term fructose feeding in young and adult rats. Nutritional Neuroscience, 2020, 23, 309-320.	1.5	19
9	Deregulated Local Protein Synthesis in the Brain Synaptosomes of a Mouse Model for Alzheimer's Disease. Molecular Neurobiology, 2020, 57, 1529-1541.	1.9	25
10	A Shortâ€Term Western Diet Impairs Cholesterol Homeostasis and Key Players of Beta Amyloid Metabolism in Brain of Middle Aged Rats. Molecular Nutrition and Food Research, 2020, 64, 2000541.	1.5	13
11	Adipose Tissue and Brain Metabolic Responses to Western Diet—Is There a Similarity between the Two?. International Journal of Molecular Sciences, 2020, 21, 786.	1.8	15
12	Dietary Supplementation with Fish Oil or Conjugated Linoleic Acid Relieves Depression Markers in Mice by Modulation of the Nrf2 Pathway. Molecular Nutrition and Food Research, 2019, 63, e1900243.	1.5	25
13	Early Hepatic Oxidative Stress and Mitochondrial Changes Following Western Diet in Middle Aged Rats. Nutrients, 2019, 11, 2670.	1.7	11
14	Effect of Initial Aging and High-Fat/High-Fructose Diet on Mitochondrial Bioenergetics and Oxidative Status in Rat Brain. Molecular Neurobiology, 2019, 56, 7651-7663.	1.9	22
15	24S-hydroxycholesterol affects redox homeostasis in human glial U-87â€ [−] MG cells. Molecular and Cellular Endocrinology, 2019, 486, 25-33.	1.6	8
16	Brainâ€derived neurotrophic factor modulates cholesterol homeostasis and Apolipoprotein E synthesis in human cell models of astrocytes and neurons. Journal of Cellular Physiology, 2018, 233, 6925-6943.	2.0	33
17	Conjugated linoleic acid prevents age-dependent neurodegeneration in a mouse model of neuropsychiatric lupus via the activation of an adaptive response. Journal of Lipid Research, 2018, 59, 48-57.	2.0	31
18	Short-Term Fructose Feeding Induces Inflammation and Oxidative Stress in the Hippocampus of Young and Adult Rats. Molecular Neurobiology, 2018, 55, 2869-2883.	1.9	50

Luisa Cigliano

#	Article	IF	CITATIONS
19	Early Effects of a Low Fat, Fructose-Rich Diet on Liver Metabolism, Insulin Signaling, and Oxidative Stress in Young and Adult Rats. Frontiers in Physiology, 2018, 9, 411.	1.3	28
20	Age-related changes of metallothionein 1/2 and metallothionein 3 expression in rat brain. Comptes Rendus - Biologies, 2017, 340, 13-17.	0.1	12
21	Dietary fructose causes defective insulin signalling and ceramide accumulation in the liver that can be reversed by gut microbiota modulation. Food and Nutrition Research, 2017, 61, 1331657.	1.2	44
22	Evaluation of serum markers of blood redox homeostasis and inflammation in PCB naturally contaminated heifers undergoing decontamination. Science of the Total Environment, 2016, 542, 653-664.	3.9	6
23	Lecithin-cholesterol acyltransferase in brain: Does oxidative stress influence the 24-hydroxycholesterol esterification?. Neuroscience Research, 2016, 105, 19-27.	1.0	23
24	High Fat Diet and Inflammation – Modulation of Haptoglobin Level in Rat Brain. Frontiers in Cellular Neuroscience, 2015, 9, 479.	1.8	35
25	Peptide gH625 enters into neuron and astrocyte cell lines and crosses the blood–brain barrier in rats. International Journal of Nanomedicine, 2015, 10, 1885.	3.3	34
26	Rescue of Fructose-Induced Metabolic Syndrome by Antibiotics or Faecal Transplantation in a Rat Model of Obesity. PLoS ONE, 2015, 10, e0134893.	1.1	135
27	Haptoglobin Modulates Beta-Amyloid Uptake by U-87 MG Astrocyte Cell Line. Journal of Molecular Neuroscience, 2015, 56, 35-47.	1.1	14
28	The effect of high-fat–high-fructose diet on skeletal muscle mitochondrial energetics in adult rats. European Journal of Nutrition, 2015, 54, 183-192.	1.8	29
29	Haptoglobin increases with age in rat hippocampus and modulates Apolipoprotein E mediated cholesterol trafficking in neuroblastoma cell lines. Frontiers in Cellular Neuroscience, 2014, 8, 212.	1.8	23
30	The enzyme lecithinâ€cholesterol acyltransferase esterifies cerebrosterol and limits the toxic effect of this oxysterol on <scp>SH</scp> â€ <scp>SY</scp> 5Y cells. Journal of Neurochemistry, 2014, 130, 97-108.	2.1	15
31	Structure and biological activity of a conformational constrained apolipoprotein A-I-derived helical peptide targeting the protein haptoglobin. RSC Advances, 2014, 4, 51353-51361.	1.7	3
32	Haptoglobin Interacts with Apolipoprotein E and Beta-Amyloid and Influences Their Crosstalk. ACS Chemical Neuroscience, 2014, 5, 837-847.	1.7	39
33	Increased skeletal muscle mitochondrial efficiency in rats with fructose-induced alteration in glucose tolerance. British Journal of Nutrition, 2013, 110, 1996-2003.	1.2	34
34	Analysis of the haptoglobin binding region on the apolipoprotein Aâ€lâ€derived P2a peptide. Journal of Peptide Science, 2013, 19, 220-226.	0.8	4
35	Analysis of plasma indices of redox homeostasis in dairy cows reared in polluted areas of Piedmont (northern Italy). Science of the Total Environment, 2012, 433, 450-455.	3.9	9
36	LCAT cholesterol esterification is associated with the increase of ApoE/ApoA-I ratio during atherosclerosis progression in rabbit. Journal of Physiology and Biochemistry, 2012, 68, 541-553.	1.3	4

Luisa Cigliano

#	Article	IF	CITATIONS
37	Apolipoprotein A-I (ApoA-I) Mimetic Peptide P2a by Restoring Cholesterol Esterification Unmasks ApoA-I Anti-Inflammatory Endogenous Activity In Vivo. Journal of Pharmacology and Experimental Therapeutics, 2012, 340, 716-722.	1.3	5
38	Differences between the Glycosylation Patterns of Haptoglobin Isolated from Skin Scales and Plasma of Psoriatic Patients. PLoS ONE, 2012, 7, e52040.	1.1	15
39	Identification of plasma haptoglobin forms which loosely bind hemoglobin. Biological Chemistry, 2011, 392, 371-6.	1.2	7
40	EBP1 and DRBP76/NF90 binding proteins are included in the major histocompatibility complex class II RNA operon. Nucleic Acids Research, 2011, 39, 7263-7275.	6.5	15
41	Quantitative determination of haptoglobin glycoform variants in psoriasis. Biological Chemistry, 2010, 391, 1429-39.	1.2	14
42	Haptoglobin binds the antiatherogenic protein apolipoprotein E – impairment of apolipoprotein E stimulation of both lecithin:cholesterol acyltransferase activity and cholesterol uptake by hepatocytes. FEBS Journal, 2009, 276, 6158-6171.	2.2	42
43	Haptoglobin binds apolipoprotein E and influences cholesterol esterification in the cerebrospinal Fluid. Journal of Neurochemistry, 2009, 110, 255-263.	2.1	41
44	2-deoxy-d-ribose induces apoptosis by inhibiting the synthesis and increasing the efflux of glutathione. Free Radical Biology and Medicine, 2008, 45, 211-217.	1.3	33
45	Relevance of the amino acid conversions L144R (Zaragoza) and L159P (Zavalla) in the apolipoprotein A-I binding site for haptoglobin. Biological Chemistry, 2008, 389, 1421-1426.	1.2	4
46	Haptoglobin Binding to Apolipoprotein A-I Prevents Damage from Hydroxyl Radicals on Its Stimulatory Activity of the Enzyme Lecithin-Cholesterol Acyl-Transferase. Biochemistry, 2007, 46, 11158-11168.	1.2	46
47	Nitric oxide stimulates the erythrocyte for ascorbate recycling. Nitric Oxide - Biology and Chemistry, 2006, 14, 272-277.	1.2	4
48	Nongenotoxic activation of the p53 pathway as a therapeutic strategy for multiple myeloma. Blood, 2005, 106, 3609-3617.	0.6	172
49	Regulation of CXCR3 and CXCR4 expression during terminal differentiation of memory B cells into plasma cells. Blood, 2005, 105, 3965-3971.	0.6	203
50	Assignment of the Binding Site for Haptoglobin on Apolipoprotein A-I. Journal of Biological Chemistry, 2005, 280, 1193-1198.	1.6	75
51	Apolipoprotein A-I-dependent cholesterol esterification in patients with rheumatoid arthritis. Life Sciences, 2005, 77, 108-120.	2.0	9
52	Quantitative variations of the isoforms in haptoglobin 1-2 and 2-2 individual phenotypes. Archives of Biochemistry and Biophysics, 2003, 416, 227-237.	1.4	18
53	The Binding of Haptoglobin to Apolipoprotein Al: Influence of Hemoglobin and Concanavalin A. Biological Chemistry, 2003, 384, 1593-6.	1.2	18
54	Evaluation of oxidative damage in mozzarella cheese produced from bovine or water buffalo milk. Food Chemistry, 2002, 77, 293-299.	4.2	28

#	Article	IF	CITATIONS
55	Estradiol esterification in the human preovulatory follicle. Steroids, 2001, 66, 889-896.	0.8	17
56	Synthesis of ascorbate and urate in the ovary of water buffalo. Free Radical Research, 2001, 35, 233-243.	1.5	10
57	Haptoglobin inhibits lecithin-cholesterol acyltransferase in human ovarian follicular fluid. Molecular Reproduction and Development, 2001, 59, 186-191.	1.0	42