
Madeleine Durbeej Hjalt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5024741/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A guide to the composition and functions of the extracellular matrix. FEBS Journal, 2021, 288, 6850-6912.	2.2	320
2	A Family of Laminin α2 Chain-Deficient Mouse Mutants: Advancing the Research on LAMA2-CMD. Frontiers in Molecular Neuroscience, 2020, 13, 59.	1.4	18
3	Antioxidants Reduce Muscular Dystrophy in the dy2J/dy2J Mouse Model of Laminin α2 Chain-Deficient Muscular Dystrophy. Antioxidants, 2020, 9, 244.	2.2	11
4	A mutation-independent approach for muscular dystrophy via upregulation of a modifier gene. Nature, 2019, 572, 125-130.	13.7	105
5	Early skeletal muscle pathology and disease progress in the dy3K/dy3K mouse model of congenital muscular dystrophy with laminin α2 chain-deficiency. Scientific Reports, 2019, 9, 14324.	1.6	9
6	Laminin α1 reduces muscular dystrophy in dy 2J mice. Matrix Biology, 2018, 70, 36-49.	1.5	19
7	Effects of metformin on congenital muscular dystrophy type 1A disease progression in mice: a gender impact study. Scientific Reports, 2018, 8, 16302.	1.6	15
8	Exploratory Profiling of Urine MicroRNAs in the dy2J/dy2J Mouse Model of LAMA2-CMD: Relation to Disease Progression. PLOS Currents, 2018, 10, .	1.4	6
9	Potent pro-inflammatory and pro-fibrotic molecules, osteopontin and galectin-3, are not major disease modulators of laminin α2 chain-deficient muscular dystrophy. Scientific Reports, 2017, 7, 44059.	1.6	15
10	Bioenergetic Impairment in Congenital Muscular Dystrophy Type 1A and Leigh Syndrome Muscle Cells. Scientific Reports, 2017, 7, 45272.	1.6	25
11	Absence of microRNA-21 does not reduce muscular dystrophy in mouse models of LAMA2-CMD. PLoS ONE, 2017, 12, e0181950.	1.1	6
12	Bortezomib Does Not Reduce Muscular Dystrophy in the dy2J/dy2J Mouse Model of Laminin α2 Chain-Deficient Muscular Dystrophy. PLoS ONE, 2016, 11, e0146471.	1.1	10
13	Dystrophin deficiency reduces atherosclerotic plaque development in ApoE-null mice. Scientific Reports, 2015, 5, 13904.	1.6	7
14	Deletion of integrin α7 subunit does not aggravate the phenotype of laminin α2 chain-deficient mice. Scientific Reports, 2015, 5, 13916.	1.6	7
15	Laminin-α2 Chain-Deficient Congenital Muscular Dystrophy. Current Topics in Membranes, 2015, 76, 31-60.	0.5	55
16	Laminin α2 Chain-Deficiency is Associated with microRNA Deregulation in Skeletal Muscle and Plasma. Frontiers in Aging Neuroscience, 2014, 6, 155.	1.7	24
17	Quantitative Proteomic Analysis Reveals Metabolic Alterations, Calcium Dysregulation, and Increased Expression of Extracellular Matrix Proteins in Laminin α2 Chain–deficient Muscle. Molecular and Cellular Proteomics, 2014, 13, 3001-3013.	2.5	34
18	Loss of Dystrophin and β-Sarcoglycan Significantly Exacerbates the Phenotype of Laminin α2 Chain–Deficient Animals. American Journal of Pathology, 2014, 184, 740-752.	1.9	20

Madeleine Durbeej Hjalt

#	Article	IF	CITATIONS
19	Bortezomib Partially Improves Laminin α2 Chain–Deficient Muscular Dystrophy. American Journal of Pathology, 2014, 184, 1518-1528.	1.9	29
20	Evaluation of macroporous blood and plasma scaffolds for skeletal muscle tissue engineering. Biomaterials Science, 2013, 1, 402.	2.6	13
21	Laminin-211 in skeletal muscle function. Cell Adhesion and Migration, 2013, 7, 111-121.	1.1	107
22	Isobaric Tagging-Based Quantification for Proteomic Analysis: A Comparative Study of Spared and Affected Muscles from mdx Mice at the Early Phase of Dystrophy. PLoS ONE, 2013, 8, e65831.	1.1	42
23	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
24	Porous protein-based scaffolds prepared through freezing as potential scaffolds for tissue engineering. Journal of Materials Science: Materials in Medicine, 2012, 23, 2489-2498.	1.7	20
25	Increased Neointimal Thickening in Dystrophin-Deficient mdx Mice. PLoS ONE, 2012, 7, e29904.	1.1	10
26	Cell–matrix interactions in muscle disease. Journal of Pathology, 2012, 226, 200-218.	2.1	71
27	Skeletal muscle laminin and MDC1A: pathogenesis and treatment strategies. Skeletal Muscle, 2011, 1, 9.	1.9	99
28	Transgenic Expression of Laminin α1 Chain Does Not Prevent Muscle Disease in the mdx Mouse Model for Duchenne Muscular Dystrophy. American Journal of Pathology, 2011, 178, 1728-1737.	1.9	18
29	Proteasome inhibition improves the muscle of laminin α2 chain-deficient mice. Human Molecular Genetics, 2011, 20, 541-552.	1.4	54
30	Autophagy is increased in laminin α2 chain-deficient muscle and its inhibition improves muscle morphology in a mouse model of MDC1A. Human Molecular Genetics, 2011, 20, 4891-4902.	1.4	108
31	Laminin isoforms in atherosclerotic arteries from mice and man. Histology and Histopathology, 2011, 26, 711-24.	0.5	22
32	Laminins. Cell and Tissue Research, 2010, 339, 259-268.	1.5	399
33	Transgenic overexpression of laminin α1 chain in laminin α2 chain–deficient mice rescues the disease throughout the lifespan. Muscle and Nerve, 2010, 42, 30-37.	1.0	42
34	Distinct Roles for Laminin Globular Domains in Laminin α1 Chain Mediated Rescue of Murine Laminin α2 Chain Deficiency. PLoS ONE, 2010, 5, e11549.	1.1	38
35	Intrinsic laryngeal muscles are spared from degeneration in the <i>dy</i> ^{<i>3k</i>} / <i>dy</i> ^{<i>3k</i>} mouse model of congenital muscular dystrophy type 1A. Muscle and Nerve, 2009, 39, 91-94.	1.0	5
36	Brain and Eye Malformations Resembling Walker–Warburg Syndrome Are Recapitulated in Mice by Dystroglycan Deletion in the Epiblast. Journal of Neuroscience, 2008, 28, 10567-10575.	1.7	77

MADELEINE DURBEEJ HJALT

#	Article	IF	CITATIONS
37	Cib2 Binds Integrin α7Bβ1D and Is Reduced in Laminin α2 Chain-deficient Muscular Dystrophy. Journal of Biological Chemistry, 2008, 283, 24760-24769.	1.6	37
38	Dystroglycan: a possible mediator for reducing congenital muscular dystrophy?. Trends in Biotechnology, 2007, 25, 262-268.	4.9	18
39	Laminin isoforms in development and disease. Journal of Molecular Medicine, 2007, 85, 825-836.	1.7	121
40	Laminin α1 chain mediated reduction of laminin α2 chain deficient muscular dystrophy involves integrin α7β1 and dystroglycan. FEBS Letters, 2006, 580, 1759-1765.	1.3	49
41	Extraocular muscle is spared upon complete laminin α2 chain deficiency: Comparative expression of laminin and integrin isoforms. Matrix Biology, 2006, 25, 382-385.	1.5	16
42	Laminin α1 chain improves laminin α2 chain deficient peripheral neuropathy. Human Molecular Genetics, 2006, 15, 2690-2700.	1.4	58
43	Laminin α1 Chain Corrects Male Infertility Caused by Absence of Laminin α2 Chain. American Journal of Pathology, 2005, 167, 823-833.	1.9	72
44	Laminin Â1 chain reduces muscular dystrophy in laminin Â2 chain deficient mice. Human Molecular Genetics, 2004, 13, 1775-1784.	1.4	115
45	Gene transfer establishes primacy of striated vs. smooth muscle sarcoglycan complex in limb-girdle muscular dystrophy. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8910-8915.	3.3	32
46	Muscular dystrophies involving the dystrophin–glycoprotein complex: an overview of current mouse models. Current Opinion in Genetics and Development, 2002, 12, 349-361.	1.5	403
47	Disruption of the β-Sarcoglycan Gene Reveals Pathogenetic Complexity of Limb-Girdle Muscular Dystrophy Type 2E. Molecular Cell, 2000, 5, 141-151.	4.5	185
48	ε-Sarcoglycan Replaces α-Sarcoglycan in Smooth Muscle to Form a Unique Dystrophin-Glycoprotein Complex. Journal of Biological Chemistry, 1999, 274, 27989-27996.	1.6	118
49	Characterization of Bone Marrow Laminins and Identification of 5-Containing Laminins as Adhesive Proteins for Multipotent Hematopoietic FDCP-Mix Cells. Blood, 1999, 93, 2533-2542.	0.6	5
50	Progressive Muscular Dystrophy in α-Sarcoglycan–deficient Mice. Journal of Cell Biology, 1998, 142, 1461-1471.	2.3	331
51	Distribution of Dystroglycan in Normal Adult Mouse Tissues. Journal of Histochemistry and Cytochemistry, 1998, 46, 449-457.	1.3	170