Madeleine Durbeej Hjalt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5024741/publications.pdf

Version: 2024-02-01

51 papers 6,715 citations

28 h-index 51 g-index

52 all docs 52 docs citations

times ranked

52

12965 citing authors

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
2	Muscular dystrophies involving the dystrophin–glycoprotein complex: an overview of current mouse models. Current Opinion in Genetics and Development, 2002, 12, 349-361.	1.5	403
3	Laminins. Cell and Tissue Research, 2010, 339, 259-268.	1.5	399
4	Progressive Muscular Dystrophy in α-Sarcoglycan–deficient Mice. Journal of Cell Biology, 1998, 142, 1461-1471.	2.3	331
5	A guide to the composition and functions of the extracellular matrix. FEBS Journal, 2021, 288, 6850-6912.	2.2	320
6	Disruption of the Î ² -Sarcoglycan Gene Reveals Pathogenetic Complexity of Limb-Girdle Muscular Dystrophy Type 2E. Molecular Cell, 2000, 5, 141-151.	4.5	185
7	Distribution of Dystroglycan in Normal Adult Mouse Tissues. Journal of Histochemistry and Cytochemistry, 1998, 46, 449-457.	1.3	170
8	Laminin isoforms in development and disease. Journal of Molecular Medicine, 2007, 85, 825-836.	1.7	121
9	ε-Sarcoglycan Replaces α-Sarcoglycan in Smooth Muscle to Form a Unique Dystrophin-Glycoprotein Complex. Journal of Biological Chemistry, 1999, 274, 27989-27996.	1.6	118
10	Laminin Â1 chain reduces muscular dystrophy in laminin Â2 chain deficient mice. Human Molecular Genetics, 2004, 13, 1775-1784.	1.4	115
11	Autophagy is increased in laminin α2 chain-deficient muscle and its inhibition improves muscle morphology in a mouse model of MDC1A. Human Molecular Genetics, 2011, 20, 4891-4902.	1.4	108
12	Laminin-211 in skeletal muscle function. Cell Adhesion and Migration, 2013, 7, 111-121.	1.1	107
13	A mutation-independent approach for muscular dystrophy via upregulation of a modifier gene. Nature, 2019, 572, 125-130.	13.7	105
14	Skeletal muscle laminin and MDC1A: pathogenesis and treatment strategies. Skeletal Muscle, 2011, 1, 9.	1.9	99
15	Brain and Eye Malformations Resembling Walker–Warburg Syndrome Are Recapitulated in Mice by Dystroglycan Deletion in the Epiblast. Journal of Neuroscience, 2008, 28, 10567-10575.	1.7	77
16	Laminin $\hat{l}\pm 1$ Chain Corrects Male Infertility Caused by Absence of Laminin $\hat{l}\pm 2$ Chain. American Journal of Pathology, 2005, 167, 823-833.	1.9	72
17	Cell–matrix interactions in muscle disease. Journal of Pathology, 2012, 226, 200-218.	2.1	71
18	Laminin $\hat{l}\pm 1$ chain improves laminin $\hat{l}\pm 2$ chain deficient peripheral neuropathy. Human Molecular Genetics, 2006, 15, 2690-2700.	1.4	58

#	Article	IF	CITATIONS
19	Laminin-α2 Chain-Deficient Congenital Muscular Dystrophy. Current Topics in Membranes, 2015, 76, 31-60.	0.5	55
20	Proteasome inhibition improves the muscle of laminin $\hat{l}\pm 2$ chain-deficient mice. Human Molecular Genetics, 2011, 20, 541-552.	1.4	54
21	Laminin $\hat{l}\pm 1$ chain mediated reduction of laminin $\hat{l}\pm 2$ chain deficient muscular dystrophy involves integrin $\hat{l}\pm 7\hat{l}^21$ and dystroglycan. FEBS Letters, 2006, 580, 1759-1765.	1.3	49
22	Transgenic overexpression of laminin α1 chain in laminin α2 chain–deficient mice rescues the disease throughout the lifespan. Muscle and Nerve, 2010, 42, 30-37.	1.0	42
23	Isobaric Tagging-Based Quantification for Proteomic Analysis: A Comparative Study of Spared and Affected Muscles from mdx Mice at the Early Phase of Dystrophy. PLoS ONE, 2013, 8, e65831.	1.1	42
24	Distinct Roles for Laminin Globular Domains in Laminin $\hat{l}\pm 1$ Chain Mediated Rescue of Murine Laminin $\hat{l}\pm 2$ Chain Deficiency. PLoS ONE, 2010, 5, e11549.	1.1	38
25	Cib2 Binds Integrin $\hat{l}\pm7B\hat{l}^21D$ and Is Reduced in Laminin $\hat{l}\pm2$ Chain-deficient Muscular Dystrophy. Journal of Biological Chemistry, 2008, 283, 24760-24769.	1.6	37
26	Quantitative Proteomic Analysis Reveals Metabolic Alterations, Calcium Dysregulation, and Increased Expression of Extracellular Matrix Proteins in Laminin α2 Chain–deficient Muscle. Molecular and Cellular Proteomics, 2014, 13, 3001-3013.	2.5	34
27	Gene transfer establishes primacy of striated vs. smooth muscle sarcoglycan complex in limb-girdle muscular dystrophy. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8910-8915.	3.3	32
28	Bortezomib Partially Improves Laminin α2 Chain–Deficient Muscular Dystrophy. American Journal of Pathology, 2014, 184, 1518-1528.	1.9	29
29	Bioenergetic Impairment in Congenital Muscular Dystrophy Type 1A and Leigh Syndrome Muscle Cells. Scientific Reports, 2017, 7, 45272.	1.6	25
30	Laminin α2 Chain-Deficiency is Associated with microRNA Deregulation in Skeletal Muscle and Plasma. Frontiers in Aging Neuroscience, 2014, 6, 155.	1.7	24
31	Laminin isoforms in atherosclerotic arteries from mice and man. Histology and Histopathology, 2011, 26, 711-24.	0.5	22
32	Porous protein-based scaffolds prepared through freezing as potential scaffolds for tissue engineering. Journal of Materials Science: Materials in Medicine, 2012, 23, 2489-2498.	1.7	20
33	Loss of Dystrophin and β-Sarcoglycan Significantly Exacerbates the Phenotype of Laminin α2 Chain–Deficient Animals. American Journal of Pathology, 2014, 184, 740-752.	1.9	20
34	Laminin $\hat{l}\pm 1$ reduces muscular dystrophy in dy 2J mice. Matrix Biology, 2018, 70, 36-49.	1.5	19
35	Dystroglycan: a possible mediator for reducing congenital muscular dystrophy?. Trends in Biotechnology, 2007, 25, 262-268.	4.9	18
36	Transgenic Expression of Laminin α1 Chain Does Not Prevent Muscle Disease in the mdx Mouse Model for Duchenne Muscular Dystrophy. American Journal of Pathology, 2011, 178, 1728-1737.	1.9	18

#	Article	IF	Citations
37	A Family of Laminin $\hat{l}\pm 2$ Chain-Deficient Mouse Mutants: Advancing the Research on LAMA2-CMD. Frontiers in Molecular Neuroscience, 2020, 13, 59.	1.4	18
38	Extraocular muscle is spared upon complete laminin α2 chain deficiency: Comparative expression of laminin and integrin isoforms. Matrix Biology, 2006, 25, 382-385.	1.5	16
39	Potent pro-inflammatory and pro-fibrotic molecules, osteopontin and galectin-3, are not major disease modulators of laminin α2 chain-deficient muscular dystrophy. Scientific Reports, 2017, 7, 44059.	1.6	15
40	Effects of metformin on congenital muscular dystrophy type 1A disease progression in mice: a gender impact study. Scientific Reports, 2018, 8, 16302.	1.6	15
41	Evaluation of macroporous blood and plasma scaffolds for skeletal muscle tissue engineering. Biomaterials Science, 2013, 1, 402.	2.6	13
42	Antioxidants Reduce Muscular Dystrophy in the dy2J/dy2J Mouse Model of Laminin α2 Chain-Deficient Muscular Dystrophy. Antioxidants, 2020, 9, 244.	2.2	11
43	Increased Neointimal Thickening in Dystrophin-Deficient mdx Mice. PLoS ONE, 2012, 7, e29904.	1.1	10
44	Bortezomib Does Not Reduce Muscular Dystrophy in the dy2J/dy2J Mouse Model of Laminin $\hat{l}\pm 2$ Chain-Deficient Muscular Dystrophy. PLoS ONE, 2016, 11, e0146471.	1.1	10
45	Early skeletal muscle pathology and disease progress in the dy3K/dy3K mouse model of congenital muscular dystrophy with laminin α2 chain-deficiency. Scientific Reports, 2019, 9, 14324.	1.6	9
46	Dystrophin deficiency reduces atherosclerotic plaque development in ApoE-null mice. Scientific Reports, 2015, 5, 13904.	1.6	7
47	Deletion of integrin $\hat{l}\pm 7$ subunit does not aggravate the phenotype of laminin $\hat{l}\pm 2$ chain-deficient mice. Scientific Reports, 2015, 5, 13916.	1.6	7
48	Exploratory Profiling of Urine MicroRNAs in the dy2J/dy2J Mouse Model of LAMA2-CMD: Relation to Disease Progression. PLOS Currents, 2018, 10, .	1.4	6
49	Absence of microRNA-21 does not reduce muscular dystrophy in mouse models of LAMA2-CMD. PLoS ONE, 2017, 12, e0181950.	1.1	6
50	Intrinsic laryngeal muscles are spared from degeneration in the <i>dy</i> ^{<i>3k</i>^{<i>3k</i><dy< i=""><dy< dr=""> dystrophy type 1A. Muscle and Nerve, 2009, 39, 91-94.</dy<></dy<>}}	1.0	5
51	Characterization of Bone Marrow Laminins and Identification of 5-Containing Laminins as Adhesive Proteins for Multipotent Hematopoietic FDCP-Mix Cells. Blood, 1999, 93, 2533-2542.	0.6	5