
Mengle Shao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5023649/publications.pdf Version: 2024-02-01

MENCLE SHAO

#	Article	IF	CITATIONS
1	Regeneration of fat cells from myofibroblasts during wound healing. Science, 2017, 355, 748-752.	12.6	434
2	The metabolic ER stress sensor IRE1 \hat{l} ± suppresses alternative activation of macrophages and impairs energy expenditure in obesity. Nature Immunology, 2017, 18, 519-529.	14.5	279
3	Pdgfrβ+ Mural Preadipocytes Contribute to Adipocyte Hyperplasia Induced by High-Fat-Diet Feeding and Prolonged Cold Exposure in Adult Mice. Cell Metabolism, 2016, 23, 350-359.	16.2	259
4	Identification of functionally distinct fibro-inflammatory and adipogenic stromal subpopulations in visceral adipose tissue of adult mice. ELife, 2018, 7, .	6.0	227
5	Zfp423 Maintains White Adipocyte Identity through Suppression of the Beige Cell Thermogenic Gene Program. Cell Metabolism, 2016, 23, 1167-1184.	16.2	187
6	An Adipose Tissue Atlas: An Image-Guided Identification of Human-like BAT and Beige Depots in Rodents. Cell Metabolism, 2018, 27, 252-262.e3.	16.2	174
7	Warming Induces Significant Reprogramming of Beige, but Not Brown, Adipocyte Cellular Identity. Cell Metabolism, 2018, 27, 1121-1137.e5.	16.2	168
8	Fibroblast Growth Factor 21 Is Regulated by the IRE1α-XBP1 Branch of the Unfolded Protein Response and Counteracts Endoplasmic Reticulum Stress-induced Hepatic Steatosis. Journal of Biological Chemistry, 2014, 289, 29751-29765.	3.4	147
9	A PRDM16-Driven Metabolic Signal from Adipocytes Regulates Precursor Cell Fate. Cell Metabolism, 2019, 30, 174-189.e5.	16.2	141
10	Low- and high-thermogenic brown adipocyte subpopulations coexist in murine adipose tissue. Journal of Clinical Investigation, 2019, 130, 247-257.	8.2	134
11	A Crucial Role for RACK1 in the Regulation of Glucose-Stimulated IRE1α Activation in Pancreatic β Cells. Science Signaling, 2010, 3, ra7.	3.6	130
12	Hepatic IRE1α regulates fasting-induced metabolic adaptive programs through the XBP1s–PPARα axis signalling. Nature Communications, 2014, 5, 3528.	12.8	126
13	Reversible De-differentiation of Mature White Adipocytes into Preadipocyte-like Precursors during Lactation. Cell Metabolism, 2018, 28, 282-288.e3.	16.2	116
14	De novo adipocyte differentiation from Pdgfrβ+ preadipocytes protects against pathologic visceral adipose expansion in obesity. Nature Communications, 2018, 9, 890.	12.8	113
15	Dermal adipose tissue has high plasticity and undergoes reversible dedifferentiation in mice. Journal of Clinical Investigation, 2019, 129, 5327-5342.	8.2	112
16	Distinct regulatory mechanisms governing embryonic versus adult adipocyte maturation. Nature Cell Biology, 2015, 17, 1099-1111.	10.3	111
17	Impact of tamoxifen on adipocyte lineage tracing: Inducer of adipogenesis and prolonged nuclear translocation of Cre recombinase. Molecular Metabolism, 2015, 4, 771-778.	6.5	103
18	Cellular Origins of Beige Fat Cells Revisited. Diabetes, 2019, 68, 1874-1885.	0.6	98

Mengle Shao

#	Article	IF	CITATIONS
19	Connexin 43 Mediates White Adipose Tissue Beiging by Facilitating the Propagation of Sympathetic Neuronal Signals. Cell Metabolism, 2016, 24, 420-433.	16.2	80
20	PKA phosphorylation couples hepatic inositol-requiring enzyme 1α to glucagon signaling in glucose metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15852-15857.	7.1	76
21	Adiponectin is essential for lipid homeostasis and survival under insulin deficiency and promotes β-cell regeneration. ELife, 2014, 3, .	6.0	74
22	Role for the endoplasmic reticulum stress sensor IRE1 $\hat{I}\pm$ in liver regenerative responses. Journal of Hepatology, 2015, 62, 590-598.	3.7	67
23	Pathologic HIF1α signaling drives adipose progenitor dysfunction in obesity. Cell Stem Cell, 2021, 28, 685-701.e7.	11.1	57
24	Fetal development of subcutaneous white adipose tissue is dependent on Zfp423. Molecular Metabolism, 2017, 6, 111-124.	6.5	56
25	The Endoplasmic Reticulum Stress Sensor IRE1α in Intestinal Epithelial Cells Is Essential for Protecting against Colitis. Journal of Biological Chemistry, 2015, 290, 15327-15336.	3.4	54
26	Deficiency in hepatic ATP-citrate lyase affects VLDL-triglyceride mobilization and liver fatty acid composition in mice. Journal of Lipid Research, 2010, 51, 2516-2526.	4.2	53
27	Perivascular mesenchymal cells control adipose-tissue macrophage accrual in obesity. Nature Metabolism, 2020, 2, 1332-1349.	11.9	53
28	Calorie restriction and endurance exercise share potent anti-inflammatory function in adipose tissues in ameliorating diet-induced obesity and insulin resistance in mice. Nutrition and Metabolism, 2010, 7, 59.	3.0	41
29	Dysregulation of amyloid precursor protein impairs adipose tissue mitochondrial function and promotes obesity. Nature Metabolism, 2019, 1, 1243-1257.	11.9	39
30	Directing visceral white adipocyte precursors to a thermogenic adipocyte fate improves insulin sensitivity in obese mice. ELife, 2017, 6, .	6.0	39
31	Adipocyte Xbp1s overexpression drives uridine production and reduces obesity. Molecular Metabolism, 2018, 11, 1-17.	6.5	34
32	Peroxisome Proliferator-Activated Receptor <i>\hat{I}^3</i> and Its Role in Adipocyte Homeostasis and Thiazolidinedione-Mediated Insulin Sensitization. Molecular and Cellular Biology, 2018, 38, .	2.3	33
33	Intracellular lipid metabolism impairs β cell compensation during diet-induced obesity. Journal of Clinical Investigation, 2018, 128, 1178-1189.	8.2	33
34	Short-Term Versus Long-Term Effects of Adipocyte Toll-Like Receptor 4 Activation on Insulin Resistance in Male Mice. Endocrinology, 2017, 158, 1260-1270.	2.8	31
35	The m Subunit of Murine Translation Initiation Factor eIF3 Maintains the Integrity of the eIF3 Complex and Is Required for Embryonic Development, Homeostasis, and Organ Size Control. Journal of Biological Chemistry, 2013, 288, 30087-30093.	3.4	26
36	Hepatic GALE Regulates Whole-Body Clucose Homeostasis by Modulating <i>Tff3</i> Expression. Diabetes, 2017, 66, 2789-2799.	0.6	24

Mengle Shao

#	Article	IF	CITATIONS
37	Multilayered omics reveal sex- and depot-dependent adipose progenitor cell heterogeneity. Cell Metabolism, 2022, 34, 783-799.e7.	16.2	24
38	Herbal constituent sequoyitol improves hyperglycemia and glucose intolerance by targeting hepatocytes, adipocytes, and β-cells. American Journal of Physiology - Endocrinology and Metabolism, 2012, 302, E932-E940.	3.5	21
39	A Role for Protein Inhibitor of Activated STAT1 (PIAS1) in Lipogenic Regulation through SUMOylation-independent Suppression of Liver X Receptors. Journal of Biological Chemistry, 2012, 287, 37973-37985.	3.4	19
40	Transcriptional brakes on the road to adipocyte thermogenesis. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 20-28.	2.4	19
41	Triiodothyronine (T3) promotes brown fat hyperplasia via thyroid hormone receptor α mediated adipocyte progenitor cell proliferation. Nature Communications, 2022, 13, .	12.8	18
42	Cold-responsive adipocyte progenitors couple adrenergic signaling to immune cell activation to promote beige adipocyte accrual. Genes and Development, 2021, 35, 1333-1338.	5.9	17
43	Adipose tissue hyaluronan production improves systemic glucose homeostasis and primes adipocytes for CL 316,243-stimulated lipolysis. Nature Communications, 2021, 12, 4829.	12.8	15
44	ZFP423 controls EBF2 coactivator recruitment and PPARÎ ³ occupancy to determine the thermogenic plasticity of adipocytes. Genes and Development, 2021, 35, 1461-1474.	5.9	15
45	Regulation of cold-induced thermogenesis by the RNA binding protein FAM195A. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	13
46	Single-Cell RNA Sequencing Identifies Functionally Distinct Fibro-inflammatory and Adipogenic Pdgfrr Progenitor Subpopulations in Visceral Adipose Tissue. SSRN Electronic Journal, 0, , .	0.4	0