Stefan H Stricker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5023583/publications.pdf

Version: 2024-02-01

361045 360668 2,720 36 20 35 citations h-index g-index papers 39 39 39 5329 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Innate Immune Pathways Promote Oligodendrocyte Progenitor Cell Recruitment to the Injury Site in Adult Zebrafish Brain. Cells, 2022, 11, 520.	1.8	4
2	CRISPR Tools for Physiology and Cell State Changes: Potential of Transcriptional Engineering and Epigenome Editing. Physiological Reviews, 2021, 101, 177-211.	13.1	13
3	CRISPR-Mediated Induction of Neuron-Enriched Mitochondrial Proteins Boosts Direct Glia-to-Neuron Conversion. Cell Stem Cell, 2021, 28, 524-534.e7.	5.2	39
4	Epigenetic regulation of neural lineage elaboration: Implications for therapeutic reprogramming. Neurobiology of Disease, 2021, 148, 105174.	2.1	8
5	Editorial overview: Fluidity of cell fates – from reprogramming to repair. Current Opinion in Genetics and Development, 2021, 70, iii-v.	1.5	O
6	Choroid plexusâ€derived miRâ€204 regulates the number of quiescent neural stem cells in the adult brain. EMBO Journal, 2019, 38, e100481.	3.5	52
7	Seeking fateâ€"CRISPRa screens reveal new neural lineage and reprogramming factors. Stem Cell Investigation, 2019, 6, 30-30.	1.3	1
8	Targeted removal of epigenetic barriers during transcriptional reprogramming. Nature Communications, 2019, 10, 2119.	5.8	58
9	Glucose-Regulated TET2 Activity Links Cancer to Diabetes. Trends in Cancer, 2019, 5, 5-7.	3.8	1
10	Entering the post-epigenomic age: back to epigenetics. Open Biology, 2018, 8, 180013.	1.5	5
11	A Customizable Protocol for String Assembly gRNA Cloning (STAgR). Journal of Visualized Experiments, 2018, , .	0.2	1
12	The Aryl Hydrocarbon Receptor Pathway Defines the Time Frame for Restorative Neurogenesis. Cell Reports, 2018, 25, 3241-3251.e5.	2.9	34
13	Selfish mutations dysregulating RAS-MAPK signaling are pervasive in aged human testes. Genome Research, 2018, 28, 1779-1790.	2.4	56
14	One step generation of customizable gRNA vectors for multiplex CRISPR approaches through string assembly gRNA cloning (STAgR). PLoS ONE, 2018, 13, e0196015.	1.1	27
15	DNA-Methylation: Master or Slave of Neural Fate Decisions?. Frontiers in Neuroscience, 2018, 12, 5.	1.4	59
16	From profiles to function in epigenomics. Nature Reviews Genetics, 2017, 18, 51-66.	7.7	233
17	A Universal Protocol for Large-scale gRNA Library Production from any DNA Source. Journal of Visualized Experiments, 2017, , .	0.2	2
18	Inactivation of the ATMIN/ATM pathway protects against glioblastoma formation. ELife, 2016, 5, .	2.8	17

#	Article	IF	Citations
19	CORALINA: a universal method for the generation of gRNA libraries for CRISPR-based screening. BMC Genomics, 2016, 17, 917.	1.2	16
20	Brave new epigenomes: the dawn of epigenetic engineering. Genome Medicine, 2015, 7, 59.	3.6	20
21	Glioblastoma Stem Cells Respond to Differentiation Cues but Fail to Undergo Commitment and Terminal Cell-Cycle Arrest. Stem Cell Reports, 2015, 5, 829-842.	2.3	93
22	Reprogramming cancer cells to pluripotency. Epigenetics, 2014, 9, 798-802.	1.3	16
23	Widespread resetting of DNA methylation in glioblastoma-initiating cells suppresses malignant cellular behavior in a lineage-dependent manner. Genes and Development, 2013, 27, 654-669.	2.7	121
24	A High-Content Small Molecule Screen Identifies Sensitivity of Glioblastoma Stem Cells to Inhibition of Polo-Like Kinase 1. PLoS ONE, 2013, 8, e77053.	1.1	53
25	A Downstream CpG Island Controls Transcript Initiation and Elongation and the Methylation State of the Imprinted Airn Macro ncRNA Promoter. PLoS Genetics, 2012, 8, e1002540.	1.5	18
26	<i>Airn</i> Transcriptional Overlap, But Not Its IncRNA Products, Induces Imprinted <i>Igf2r</i> Silencing. Science, 2012, 338, 1469-1472.	6.0	476
27	Digital transcriptome profiling of normal and glioblastoma-derived neural stem cells identifies genes associated with patient survival. Genome Medicine, 2012, 4, 76.	3.6	48
28	An in vitro ES cell imprinting model shows that imprinted expression of the <i>lgf2r</i> gene arises from an allele-specific expression bias. Development (Cambridge), 2009, 136, 437-448.	1.2	58
29	Glioma Stem Cell Lines Expanded in Adherent Culture Have Tumor-Specific Phenotypes and Are Suitable for Chemical and Genetic Screens. Cell Stem Cell, 2009, 4, 568-580.	5.2	881
30	A Shore Sign of Reprogramming. Cell Stem Cell, 2009, 5, 571-572.	5.2	7
31	Silencing and transcriptional properties of the imprinted Airn ncRNA are independent of the endogenous promoter. EMBO Journal, 2008, 27, 3116-3128.	3.5	35
32	Go with the flow: signaling from the ventricle directs neuroblast migration. Nature Neuroscience, 2006, 9, 470-472.	7.1	13
33	The imprinted Air ncRNA is an atypical RNAPII transcript that evades splicing and escapes nuclear export. EMBO Journal, 2006, 25, 3565-3575.	3.5	141
34	P-GAP-43 Is Enriched in Horizontal Cell Divisions throughout Rat Cortical Development. Cerebral Cortex, 2006, 16, i121-i131.	1.6	21
35	Long-range DNase I hypersensitivity mapping reveals the imprinted Igf2r and Air promoters share cis-regulatory elements. Genome Research, 2005, 15, 1379-1387.	2.4	29
36	The Air Noncoding RNA: An Imprinted cis-silencing Transcript. Cold Spring Harbor Symposia on Quantitative Biology, 2004, 69, 55-66.	2.0	64