Eui-Tae Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5023519/publications.pdf

Version: 2024-02-01

		361045	288905
87	1,714 citations	20	40
papers	citations	h-index	g-index
87	87	87	1535
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Rational heterojunction design of 1D WO3 nanorods decorated with vertical 2D MoS2 nanosheets for enhanced photoelectrochemical performance. Journal of Alloys and Compounds, 2022, 911, 165090.	2.8	14
2	Recent Advances in the Low-Temperature Chemical Vapor Deposition Growth of Graphene. Applied Science and Convergence Technology, 2022, 31, 63-70.	0.3	3
3	MoS2 hydrogen evolution catalysis on p-Si nanorod photocathodes. Materials Science in Semiconductor Processing, 2021, 121, 105308.	1.9	9
4	Field-Effect Transistor Behavior of Synthesized In2O3/InP (100) Nanowires via the Vapor–Liquid–Solid Method. Journal of Electronic Materials, 2021, 50, 59-64.	1.0	2
5	Design and growth of InAsP metamorphic buffers for InGaAs thermophotovoltaic cells. Journal of the Korean Physical Society, 2021, 78, 1147.	0.3	0
6	Efficient Visible-Light Photocatalysis of TiO2- \hat{l}' Nanobelts Utilizing Self-Induced Defects and Carbon Doping. Nanomaterials, 2021, 11, 1377.	1.9	4
7	Improved Photoelectrochemical Performance of MoS2 through Morphology-Controlled Chemical Vapor Deposition Growth on Graphene. Nanomaterials, 2021, 11, 1585.	1.9	11
8	Enhancing Water Splitting Activity of Photocathode Using MoS2 Flakes Deposited on Copper Oxide Nanowire. Surfaces and Interfaces, 2021, 27, 101466.	1.5	0
9	Facile synthesis and efficient photoelectrochemical reaction of WO3/WS2 core@shell nanorods utilizing WO3â [™] 0.33H2O phase. Journal of Alloys and Compounds, 2021, 888, 161587.	2.8	14
10	Novel high-k gate dielectric properties of ultrathin hydrocarbon films for next-generation metal-insulator-semiconductor devices. Carbon, 2020, 158, 513-518.	5 . 4	4
11	Controllable low-temperature growth and enhanced photoelectrochemical water splitting of vertical SnS2 nanosheets on graphene. Electrochimica Acta, 2020, 364, 137164.	2.6	11
12	Defect-Induced Gas-Sensing Properties of a Flexible SnS Sensor under UV Illumination at Room Temperature. Sensors, 2020, 20, 5701.	2.1	13
13	Plasmonic Ag-Decorated Few-Layer MoS2 Nanosheets Vertically Grown on Graphene for Efficient Photoelectrochemical Water Splitting. Nano-Micro Letters, 2020, 12, 172.	14.4	39
14	Atomic force microscopy data of novel high-k hydrocarbon films synthesized on Si wafers for gate dielectric applications. Data in Brief, 2020, 30, 105652.	0.5	1
15	Synthesis and organic solar cell application of RNA-nucleobase-complexed CdS nanowires. Solar Energy, 2020, 206, 287-293.	2.9	10
16	Conformal growth of few-layer MoS2 flakes on closely-packed TiO2 nanowires and their enhanced photoelectrochemical reactivity. Journal of Alloys and Compounds, 2019, 770, 686-691.	2.8	24
17	Facile, cost-effective, nucleobase-mediated chemical deposition of solar absorber Cu2ZnSnS4 films. Applied Surface Science, 2019, 494, 756-762.	3.1	5
18	Effect of Si Doping in Self-Assembled InAs Quantum Dots on Infrared Photodetector Properties. Korean Journal of Materials Research, 2019, 29, 542-546.	0.1	0

#	Article	IF	Citations
19	Enhanced photoelectrochemical activity in the heterostructure of vertically aligned few-layer MoS2 flakes on ZnO. Electrochimica Acta, 2018, 260, 150-156.	2.6	60
20	Dual-Wavelength InGaAsSb/AlGaAsSb Quantum-Well Light-Emitting Diodes. Journal of the Korean Physical Society, 2018, 72, 1249-1253.	0.3	0
21	Effect of Growth Methods of InAs Quntum Dots on Infrared Photodetector Properties. Korean Journal of Materials Research, 2018, 28, 659-662.	0.1	2
22	Formation of GeO 2 complex composed nanostructures by the vapor liquid solid method. Journal of Materials Science: Materials in Electronics, 2017, 28, 9338-9343.	1.1	0
23	Polyol synthesis of ultrathin and high-aspect-ratio Ag nanowires for transparent conductive films. Materials Letters, 2017, 194, 66-69.	1.3	28
24	Simple and Reliable Lift-Off Patterning Approach for Graphene and Graphene–Ag Nanowire Hybrid Films. ACS Applied Materials & Samp; Interfaces, 2017, 9, 21406-21412.	4.0	22
25	Direct and self-selective synthesis of Ag nanowires on patterned graphene. RSC Advances, 2017, 7, 17325-17331.	1.7	8
26	Understanding the Growth Kinetics of Graphene on Cu and Fe ₂ O ₃ Using Inductively-Coupled Plasma Chemical Vapor Deposition. Applied Microscopy, 2017, 47, 13-18.	0.8	4
27	Effect of doping level on high-temperature operation of InAs/GaAs quantum dot infrared photodetectors. International Journal of Nanotechnology, 2016, 13, 385.	0.1	1
28	Ag nanoparticle catalyst based on Ga2O3/GaAs semiconductor nanowire growth by VLS method. Journal of Materials Science: Materials in Electronics, 2015, 26, 8747-8752.	1.1	11
29	Effects of Complexing Agents on the Chemical Bath Deposition of Uniform Cu ₂ ZnSnS ₄ Thin Films. Nanoscience and Nanotechnology Letters, 2015, 7, 729-733.	0.4	3
30	Effect of InAs/GaAs Quantum Dot Size on Infrared Photoresponse Characteristics. Journal of Nanoelectronics and Optoelectronics, 2015, 10, 671-674.	0.1	1
31	Effect of H2S Concentration and Sulfurization Temperature on the Properties of Cu2ZnSnS4 Thin Films. Korean Journal of Materials Research, 2015, 25, 708-712.	0.1	0
32	A simple chemical approach for the deposition of Cu ₂ ZnSnS ₄ thin films. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 1857-1859.	0.8	18
33	Inductively-Coupled Plasma Chemical Vapor Growth Characteristics of Graphene Depending on Various Metal Substrates. Korean Journal of Materials Research, 2014, 24, 694-699.	0.1	0
34	Pt Nanoparticles Immobilized on CVDâ€Grown Graphene as a Transparent Counter Electrode Material for Dyeâ€Sensitized Solar Cells. ChemSusChem, 2013, 6, 1316-1319.	3.6	52
35	Low-temperature synthesis of graphene on Fe2O3 using inductively coupled plasma chemical vapor deposition. Materials Letters, 2013, 92, 437-439.	1.3	17
36	Large-scale growth of single-crystalline TiO _{2 nanowires and their visible-light photocatalytic activity. International Journal of Nanotechnology, 2013, 10, 228.}	0.1	2

#	Article	IF	Citations
37	Graphene Formation on Ni/SiO2/Si Substrate Using Carbon Atoms Activated by Inductively-Coupled Plasma Chemical Vapor Deposition. Korean Journal of Materials Research, 2013, 23, 47-52.	0.1	1
38	Effects of Sputter Deposition Sequence and Sulfurization Process of Cu, Zn, Sn on Properties of Cu2ZnSnS4Solar Cell Material. Korean Journal of Materials Research, 2013, 23, 304-308.	0.1	0
39	Effect of Microwave Irradiation on Exfoliation of Graphene Oxide. Korean Journal of Materials Research, 2013, 23, 708-713.	0.1	O
40	Controllable Synthesis of High-Quality Graphene Using Inductively-Coupled Plasma Chemical Vapor Deposition. Journal of the Electrochemical Society, 2012, 159, K93-K96.	1.3	61
41	Effects of Reduced Chemical Vapor Deposition Environment on Growth and Optical Characteristics of TiO2 Nanobelts. Journal of Nanoscience and Nanotechnology, 2012, 12, 1411-1414.	0.9	1
42	Optical properties and effect of carrier tunnelling in CdSe colloidal quantum dots: A comparative study with different ligands. AIP Advances, 2012, 2, 032132.	0.6	8
43	Highly photosensitive properties of CdS thin films doped with boron in high doping levels. Materials Letters, 2012, 85, 135-137.	1.3	37
44	Nanographitic layer-mediated synthesis of carbon-TiO2 hybrid nanobelts by metalorganic chemical vapor deposition. Materials Letters, 2012, 81, 20-22.	1.3	3
45	Enhanced Photocatalytic Properties of TiO2Nanobelts via In Situ Doping of C and Fe. Journal of the Electrochemical Society, 2011, 159, K42-K45.	1.3	9
46	Effect of CdS film thickness on the photoexcited carrier lifetime of TiO2/CdS core-shell nanowires. Applied Physics Letters, $2011, 99, \ldots$	1.5	17
47	Synthesis of TiO2Nanowires by Metallorganic Chemical Vapor Deposition. Korean Journal of Materials Research, 2010, 20, 686-690.	0.1	0
48	Effects of surface ligands on the charge memory characteristics of CdSe/ZnS nanocrystals in TiO2 thin film. Applied Physics Letters, 2009, 95, 183111.	1.5	8
49	Lightâ€emitting diode applications of colloidal CdSe/ZnS quantum dots embedded in TiO _{2–<i>δ</i>} thin film. Physica Status Solidi (B): Basic Research, 2009, 246, 889-892.	0.7	16
50	Highly Photoconductive CdS Thin Films Synthesized by UsingChemical Bath Deposition. Journal of the Korean Physical Society, 2009, 55, 284-287.	0.3	9
51	Synthesis of Graphene on Ni/SiO2/Si Substrate by Inductively-Coupled Plasma-Enhanced Chemical Vapor Deposition. Korean Journal of Materials Research, 2009, 19, 522-526.	0.1	3
52	Quantum-dot light-emitting diodes utilizing CdSeâ^•ZnS nanocrystals embedded in TiO2 thin film. Applied Physics Letters, 2008, 93, .	1.5	27
53	Self-Catalytic Growth of TiO[sub $2\hat{a}^{\circ}\hat{1}$] Nanobelts and Nanosheets Using Metallorganic Chemical Vapor Deposition. Electrochemical and Solid-State Letters, 2008, 11, K1.	2.2	14
54	Enhancement of Photosensitivity in CdS Thin Films Incorporated by Hydrogen. Electrochemical and Solid-State Letters, 2008, 11, H176.	2.2	18

#	Article	IF	CITATIONS
55	Synthesis and ferromagnetism of Co-doped TiO2â^î nanobelts by metallorganic chemical vapor deposition. Applied Physics Letters, 2008, 92, 122508.	1.5	18
56	Characterization of photoconductive CdS thin films prepared on glass substrates for photoconductive-sensor applications. Journal of Vacuum Science & Technology B, 2008, 26, 1334-1337.	1.3	39
57	Pyrolysis Synthesis of CdSe/ZnS Nanocrystal Quantum Dots and Their Application to Light-Emitting Diodes. Korean Journal of Materials Research, 2008, 18, 379-383.	0.1	2
58	Improvement of Leakage Current Characteristics by Plasma Treatment in Bi[sub 2]Mg[sub 2â^3]Nb[sub 4â^3]O[sub 12] Dielectric Thin Films. Electrochemical and Solid-State Letters, 2007, 10, G18.	2.2	6
59	Co clustering and ferromagnetism in chemical vapor deposited Ti1â°'xCoxO2â°'Î' thin films. Applied Physics Letters, 2007, 90, 102504.	1.5	8
60	Characterization of Photoconductive Amorphous Si:H Films for Photoconducting Sensor Applications. Electrochemical and Solid-State Letters, 2007, 10, H284.	2.2	2
61	GATE DIELECTRICS Bi2Mg2/3Nb4/3O7 THIN FILMS DEPOSITED BY PULSED LASER DEPOSITION FOR ORGANIC THIN FILM TRANSISTOR APPLICATIONS. Integrated Ferroelectrics, 2006, 86, 41-47.	0.3	4
62	Cathodoluminescence imaging and spectroscopy of excited states in InAs self-assembled quantum dots. Journal of Applied Physics, 2005, 97, 123520.	1.1	16
63	PLASMA-ENHANCED ATOMIC LAYER DEPOSITION OF ULTRATHIN Ga2O3-TiO2 GATE DIELECTRICS ON Si (001) Substrates. Integrated Ferroelectrics, 2005, 74, 181-187.	0.3	5
64	Ultraslow light (<200mâ^•s) propagation in a semiconductor nanostructure. Applied Physics Letters, 2005, 87, 171102.	1.5	48
65	High detectivity InAs quantum dot infrared photodetectors. Applied Physics Letters, 2004, 84, 3277-3279.	1.5	204
66	Noise and photoconductive gain in InAs quantum-dot infrared photodetectors. Applied Physics Letters, 2003, 83, 1234-1236.	1.5	86
67	Photodetectors: UV to IR. , 2003, , .		4
68	Photodetectors: UV to IR. , 2003, , .		2
69	Selective manipulation of InAs quantum dot electronic states using a lateral potential confinement layer. Applied Physics Letters, 2002, 81, 3473-3475.	1.5	19
70	Intraband-transition-induced dipoles in self-assembled InAs/GaAs(001) quantum dots. Applied Physics Letters, 2002, 80, 2770-2772.	1.5	11
71	Normal-incidence voltage-tunable middle- and long-wavelength infrared photoresponse in self-assembled InAs quantum dots. Applied Physics Letters, 2002, 80, 2490-2492.	1.5	87
72	Voltage-controllable multiwavelength InAs quantum-dot infrared photodetectors for mid- and far-infrared detection. Journal of Applied Physics, 2002, 92, 4141-4143.	1.1	51

#	Article	IF	CITATIONS
73	Tailoring mid- and long-wavelength dual response of InAs quantum-dot infrared photodetectors using In[sub x]Ga[sub 1â^x]As capping layers. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2002, 20, 1188.	1.6	15
74	Intraband and interband photocurrent spectroscopy and induced dipole moments of InAs/GaAs(001) quantum dots in n–i–n photodetector structures. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2002, 20, 1243.	1.6	6
7 5	InAs quantum dot infrared photodetectors with In0.15Ga0.85As strain-relief cap layers. Journal of Applied Physics, 2002, 92, 7462-7468.	1.1	92
76	Normal-incidence InAs self-assembled quantum-dot infrared photodetectors with a high detectivity. IEEE Journal of Quantum Electronics, 2002, 38, 1234-1237.	1.0	46
77	Normal incidence InAs/AlxGa1â^'xAs quantum dot infrared photodetectors with undoped active region. Journal of Applied Physics, 2001, 89, 4558-4563.	1.1	137
78	Tailoring detection bands of InAs quantum-dot infrared photodetectors using InxGalâ^'xAs strain-relieving quantum wells. Applied Physics Letters, 2001, 79, 3341-3343.	1.5	88
79	InAs/AlxGa1â°'xAs quantum dot infrared photodetectors with undoped active region. Infrared Physics and Technology, 2001, 42, 479-484.	1.3	16
80	Optical and Photocurrent Spectroscopy Studies of Inter- and Intra-Band Transitions in Size-Tailored InAs/GaAs Quantum Dots. Physica Status Solidi (B): Basic Research, 2001, 224, 697-702.	0.7	21
81	Characterization of zirconium dioxide film formed by plasma enhanced metal-organic chemical vapor deposition. Thin Solid Films, 1993, 227, 7-12.	0.8	43
82	Characterization of  Y 2 O 3 â€â€‰Stabilized ZrO2 Thin Films by Plasmaâ€Enhanced Met Deposition. Journal of the Electrochemical Society, 1993, 140, 2625-2629.	allorganic 1.3	Chemical Va _l
83	Selective manipulation of self-assembled quantum dot electronic states via use of a lateral potential confinement layer. , 0 , , .		0
84	Normal-incidence quantum dot infrared photodetectors. , 0, , .		0
85	Temperature-dependent orientation of intraband dipoles of self-assembled InAs/GaAs quantum dot ensembles., 0,,.		0
86	Quantum dots infrared photodetectors. , 0, , .		1
87	Novel infrared detectors based on semiconductor quantuin dots. , 0, , .		O