
Eui-Tae Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5023519/publications.pdf Version: 2024-02-01

FILL-TAE KIM

#	Article	IF	CITATIONS
1	High detectivity InAs quantum dot infrared photodetectors. Applied Physics Letters, 2004, 84, 3277-3279.	1.5	204
2	Normal incidence InAs/AlxGa1â^'xAs quantum dot infrared photodetectors with undoped active region. Journal of Applied Physics, 2001, 89, 4558-4563.	1.1	137
3	InAs quantum dot infrared photodetectors with In0.15Ga0.85As strain-relief cap layers. Journal of Applied Physics, 2002, 92, 7462-7468.	1.1	92
4	Tailoring detection bands of InAs quantum-dot infrared photodetectors using InxGa1â^'xAs strain-relieving quantum wells. Applied Physics Letters, 2001, 79, 3341-3343.	1.5	88
5	Normal-incidence voltage-tunable middle- and long-wavelength infrared photoresponse in self-assembled InAs quantum dots. Applied Physics Letters, 2002, 80, 2490-2492.	1.5	87
6	Noise and photoconductive gain in InAs quantum-dot infrared photodetectors. Applied Physics Letters, 2003, 83, 1234-1236.	1.5	86
7	Controllable Synthesis of High-Quality Graphene Using Inductively-Coupled Plasma Chemical Vapor Deposition. Journal of the Electrochemical Society, 2012, 159, K93-K96.	1.3	61
8	Enhanced photoelectrochemical activity in the heterostructure of vertically aligned few-layer MoS2 flakes on ZnO. Electrochimica Acta, 2018, 260, 150-156.	2.6	60
9	Pt Nanoparticles Immobilized on CVDâ€Grown Graphene as a Transparent Counter Electrode Material for Dye‣ensitized Solar Cells. ChemSusChem, 2013, 6, 1316-1319.	3.6	52
10	Voltage-controllable multiwavelength InAs quantum-dot infrared photodetectors for mid- and far-infrared detection. Journal of Applied Physics, 2002, 92, 4141-4143.	1.1	51
11	Ultraslow light (<200mâ^•s) propagation in a semiconductor nanostructure. Applied Physics Letters, 2005, 87, 171102.	1.5	48
12	Normal-incidence InAs self-assembled quantum-dot infrared photodetectors with a high detectivity. IEEE Journal of Quantum Electronics, 2002, 38, 1234-1237.	1.0	46
13	Characterization of zirconium dioxide film formed by plasma enhanced metal-organic chemical vapor deposition. Thin Solid Films, 1993, 227, 7-12.	0.8	43
14	Characterization of photoconductive CdS thin films prepared on glass substrates for photoconductive-sensor applications. Journal of Vacuum Science & Technology B, 2008, 26, 1334-1337.	1.3	39
15	Plasmonic Ag-Decorated Few-Layer MoS2 Nanosheets Vertically Grown on Graphene for Efficient Photoelectrochemical Water Splitting. Nano-Micro Letters, 2020, 12, 172.	14.4	39
16	Highly photosensitive properties of CdS thin films doped with boron in high doping levels. Materials Letters, 2012, 85, 135-137.	1.3	37
17	Polyol synthesis of ultrathin and high-aspect-ratio Ag nanowires for transparent conductive films. Materials Letters, 2017, 194, 66-69.	1.3	28
18	Quantum-dot light-emitting diodes utilizing CdSeâ^•ZnS nanocrystals embedded in TiO2 thin film. Applied Physics Letters, 2008, 93, .	1.5	27

Ευι-ΤΑΕ ΚΙΜ

#	Article	lF	CITATIONS
19	Conformal growth of few-layer MoS2 flakes on closely-packed TiO2 nanowires and their enhanced photoelectrochemical reactivity. Journal of Alloys and Compounds, 2019, 770, 686-691.	2.8	24
20	Simple and Reliable Lift-Off Patterning Approach for Graphene and Graphene–Ag Nanowire Hybrid Films. ACS Applied Materials & Interfaces, 2017, 9, 21406-21412.	4.0	22
21	Optical and Photocurrent Spectroscopy Studies of Inter- and Intra-Band Transitions in Size-Tailored InAs/GaAs Quantum Dots. Physica Status Solidi (B): Basic Research, 2001, 224, 697-702.	0.7	21
22	Selective manipulation of InAs quantum dot electronic states using a lateral potential confinement layer. Applied Physics Letters, 2002, 81, 3473-3475.	1.5	19
23	Enhancement of Photosensitivity in CdS Thin Films Incorporated by Hydrogen. Electrochemical and Solid-State Letters, 2008, 11, H176.	2.2	18
24	Synthesis and ferromagnetism of Co-doped TiO2â^'Î^ nanobelts by metallorganic chemical vapor deposition. Applied Physics Letters, 2008, 92, 122508.	1.5	18
25	A simple chemical approach for the deposition of Cu ₂ ZnSnS ₄ thin films. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 1857-1859.	0.8	18
26	Effect of CdS film thickness on the photoexcited carrier lifetime of TiO2/CdS core-shell nanowires. Applied Physics Letters, 2011, 99, .	1.5	17
27	Low-temperature synthesis of graphene on Fe2O3 using inductively coupled plasma chemical vapor deposition. Materials Letters, 2013, 92, 437-439.	1.3	17
28	InAs/AlxGa1â^'xAs quantum dot infrared photodetectors with undoped active region. Infrared Physics and Technology, 2001, 42, 479-484.	1.3	16
29	Cathodoluminescence imaging and spectroscopy of excited states in InAs self-assembled quantum dots. Journal of Applied Physics, 2005, 97, 123520.	1.1	16
30	Lightâ€emitting diode applications of colloidal CdSe/ZnS quantum dots embedded in TiO _{2–<i>î´</i>} thin film. Physica Status Solidi (B): Basic Research, 2009, 246, 889-892.	0.7	16
31	Tailoring mid- and long-wavelength dual response of InAs quantum-dot infrared photodetectors using In[sub x]Ga[sub 1â^'x]As capping layers. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2002, 20, 1188.	1.6	15
32	Self-Catalytic Growth of TiO[sub 2â^'Î] Nanobelts and Nanosheets Using Metallorganic Chemical Vapor Deposition. Electrochemical and Solid-State Letters, 2008, 11, K1.	2.2	14
33	Facile synthesis and efficient photoelectrochemical reaction of WO3/WS2 core@shell nanorods utilizing WO3â^™0.33H2O phase. Journal of Alloys and Compounds, 2021, 888, 161587.	2.8	14
34	Rational heterojunction design of 1D WO3 nanorods decorated with vertical 2D MoS2 nanosheets for enhanced photoelectrochemical performance. Journal of Alloys and Compounds, 2022, 911, 165090.	2.8	14
35	Defect-Induced Gas-Sensing Properties of a Flexible SnS Sensor under UV Illumination at Room Temperature. Sensors, 2020, 20, 5701.	2.1	13

36 Characterization of  Y 2 O 3 â€â€‰Stabilized ZrO2 Thin Films by Plasmaâ€Enhanced Metallorganic Chemical Vap Deposition. Journal of the Electrochemical Society, 1993, 140, 2625-2629.

Еиі-Тае Кім

#	Article	IF	CITATIONS
37	Intraband-transition-induced dipoles in self-assembled InAs/GaAs(001) quantum dots. Applied Physics Letters, 2002, 80, 2770-2772.	1.5	11
38	Ag nanoparticle catalyst based on Ga2O3/GaAs semiconductor nanowire growth by VLS method. Journal of Materials Science: Materials in Electronics, 2015, 26, 8747-8752.	1.1	11
39	Controllable low-temperature growth and enhanced photoelectrochemical water splitting of vertical SnS2 nanosheets on graphene. Electrochimica Acta, 2020, 364, 137164.	2.6	11
40	Improved Photoelectrochemical Performance of MoS2 through Morphology-Controlled Chemical Vapor Deposition Growth on Graphene. Nanomaterials, 2021, 11, 1585.	1.9	11
41	Synthesis and organic solar cell application of RNA-nucleobase-complexed CdS nanowires. Solar Energy, 2020, 206, 287-293.	2.9	10
42	Enhanced Photocatalytic Properties of TiO2Nanobelts via In Situ Doping of C and Fe. Journal of the Electrochemical Society, 2011, 159, K42-K45.	1.3	9
43	MoS2 hydrogen evolution catalysis on p-Si nanorod photocathodes. Materials Science in Semiconductor Processing, 2021, 121, 105308.	1.9	9
44	Highly Photoconductive CdS Thin Films Synthesized by UsingChemical Bath Deposition. Journal of the Korean Physical Society, 2009, 55, 284-287.	0.3	9
45	Co clustering and ferromagnetism in chemical vapor deposited Ti1â^'xCoxO2â^'δ thin films. Applied Physics Letters, 2007, 90, 102504.	1.5	8
46	Effects of surface ligands on the charge memory characteristics of CdSe/ZnS nanocrystals in TiO2 thin film. Applied Physics Letters, 2009, 95, 183111.	1.5	8
47	Optical properties and effect of carrier tunnelling in CdSe colloidal quantum dots: A comparative study with different ligands. AIP Advances, 2012, 2, 032132.	0.6	8
48	Direct and self-selective synthesis of Ag nanowires on patterned graphene. RSC Advances, 2017, 7, 17325-17331.	1.7	8
49	Intraband and interband photocurrent spectroscopy and induced dipole moments of InAs/GaAs(001) quantum dots in n–i–n photodetector structures. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2002. 20. 1243.	1.6	6
50	Improvement of Leakage Current Characteristics by Plasma Treatment in Bi[sub 2]Mg[sub 2â^•3]Nb[sub 4â^•3]O[sub 12] Dielectric Thin Films. Electrochemical and Solid-State Letters, 2007, 10, G18.	2.2	6
51	PLASMA-ENHANCED ATOMIC LAYER DEPOSITION OF ULTRATHIN Ga2O3-TiO2 GATE DIELECTRICS ON Si (001) Substrates. Integrated Ferroelectrics, 2005, 74, 181-187.	0.3	5
52	Facile, cost-effective, nucleobase-mediated chemical deposition of solar absorber Cu2ZnSnS4 films. Applied Surface Science, 2019, 494, 756-762.	3.1	5
53	Photodetectors: UV to IR. , 2003, , .		4
54	GATE DIELECTRICS Bi2Mg2/3Nb4/307 THIN FILMS DEPOSITED BY PULSED LASER DEPOSITION FOR ORGANIC THIN FILM TRANSISTOR APPLICATIONS. Integrated Ferroelectrics, 2006, 86, 41-47.	0.3	4

Еиі-Тае Кім

#	Article	IF	CITATIONS
55	Novel high-k gate dielectric properties of ultrathin hydrocarbon films for next-generation metal-insulator-semiconductor devices. Carbon, 2020, 158, 513-518.	5.4	4
56	Efficient Visible-Light Photocatalysis of TiO2-δ Nanobelts Utilizing Self-Induced Defects and Carbon Doping. Nanomaterials, 2021, 11, 1377.	1.9	4
57	Understanding the Growth Kinetics of Graphene on Cu and Fe ₂ O ₃ Using Inductively-Coupled Plasma Chemical Vapor Deposition. Applied Microscopy, 2017, 47, 13-18.	0.8	4
58	Nanographitic layer-mediated synthesis of carbon-TiO2 hybrid nanobelts by metalorganic chemical vapor deposition. Materials Letters, 2012, 81, 20-22.	1.3	3
59	Effects of Complexing Agents on the Chemical Bath Deposition of Uniform Cu ₂ ZnSnS ₄ Thin Films. Nanoscience and Nanotechnology Letters, 2015, 7, 729-733.	0.4	3
60	Synthesis of Graphene on Ni/SiO2/Si Substrate by Inductively-Coupled Plasma-Enhanced Chemical Vapor Deposition. Korean Journal of Materials Research, 2009, 19, 522-526.	0.1	3
61	Recent Advances in the Low-Temperature Chemical Vapor Deposition Growth of Graphene. Applied Science and Convergence Technology, 2022, 31, 63-70.	0.3	3
62	Photodetectors: UV to IR. , 2003, , .		2
63	Characterization of Photoconductive Amorphous Si:H Films for Photoconducting Sensor Applications. Electrochemical and Solid-State Letters, 2007, 10, H284.	2.2	2
64	Large-scale growth of single-crystalline TiO _{2 nanowires and their visible-light photocatalytic activity. International Journal of Nanotechnology, 2013, 10, 228.}	0.1	2
65	Field-Effect Transistor Behavior of Synthesized In2O3/InP (100) Nanowires via the Vapor–Liquid–Solid Method. Journal of Electronic Materials, 2021, 50, 59-64.	1.0	2
66	Pyrolysis Synthesis of CdSe/ZnS Nanocrystal Quantum Dots and Their Application to Light-Emitting Diodes. Korean Journal of Materials Research, 2008, 18, 379-383.	0.1	2
67	Effect of Growth Methods of InAs Quntum Dots on Infrared Photodetector Properties. Korean Journal of Materials Research, 2018, 28, 659-662.	0.1	2
68	Quantum dots infrared photodetectors. , 0, , .		1
69	Effects of Reduced Chemical Vapor Deposition Environment on Growth and Optical Characteristics of TiO2 Nanobelts. Journal of Nanoscience and Nanotechnology, 2012, 12, 1411-1414.	0.9	1
70	Effect of doping level on high-temperature operation of InAs/GaAs quantum dot infrared photodetectors. International Journal of Nanotechnology, 2016, 13, 385.	0.1	1
71	Atomic force microscopy data of novel high-k hydrocarbon films synthesized on Si wafers for gate dielectric applications. Data in Brief, 2020, 30, 105652.	0.5	1
72	Graphene Formation on Ni/SiO2/Si Substrate Using Carbon Atoms Activated by Inductively-Coupled Plasma Chemical Vapor Deposition. Korean Journal of Materials Research, 2013, 23, 47-52.	0.1	1

Еиі-Тае Кім

#	Article	IF	CITATIONS
73	Effect of InAs/GaAs Quantum Dot Size on Infrared Photoresponse Characteristics. Journal of Nanoelectronics and Optoelectronics, 2015, 10, 671-674.	0.1	1
74	Selective manipulation of self-assembled quantum dot electronic states via use of a lateral potential confinement layer. , 0, , .		0
75	Normal-incidence quantum dot infrared photodetectors. , 0, , .		Ο
76	Temperature-dependent orientation of intraband dipoles of self-assembled InAs/GaAs quantum dot ensembles. , 0, , .		0
77	Novel infrared detectors based on semiconductor quantuin dots. , 0, , .		Ο
78	Formation of GeO 2 complex composed nanostructures by the vapor liquid solid method. Journal of Materials Science: Materials in Electronics, 2017, 28, 9338-9343.	1.1	0
79	Dual-Wavelength InGaAsSb/AlGaAsSb Quantum-Well Light-Emitting Diodes. Journal of the Korean Physical Society, 2018, 72, 1249-1253.	0.3	Ο
80	Design and growth of InAsP metamorphic buffers for InGaAs thermophotovoltaic cells. Journal of the Korean Physical Society, 2021, 78, 1147.	0.3	0
81	Enhancing Water Splitting Activity of Photocathode Using MoS2 Flakes Deposited on Copper Oxide Nanowire. Surfaces and Interfaces, 2021, 27, 101466.	1.5	Ο
82	Synthesis of TiO2Nanowires by Metallorganic Chemical Vapor Deposition. Korean Journal of Materials Research, 2010, 20, 686-690.	0.1	0
83	Effects of Sputter Deposition Sequence and Sulfurization Process of Cu, Zn, Sn on Properties of Cu2ZnSnS4Solar Cell Material. Korean Journal of Materials Research, 2013, 23, 304-308.	0.1	0
84	Effect of Microwave Irradiation on Exfoliation of Graphene Oxide. Korean Journal of Materials Research, 2013, 23, 708-713.	0.1	0
85	Inductively-Coupled Plasma Chemical Vapor Growth Characteristics of Graphene Depending on Various Metal Substrates. Korean Journal of Materials Research, 2014, 24, 694-699.	0.1	0
86	Effect of H2S Concentration and Sulfurization Temperature on the Properties of Cu2ZnSnS4 Thin Films. Korean Journal of Materials Research, 2015, 25, 708-712.	0.1	0
87	Effect of Si Doping in Self-Assembled InAs Quantum Dots on Infrared Photodetector Properties. Korean Journal of Materials Research, 2019, 29, 542-546.	0.1	Ο