Bin Chen

List of Publications by Citations

Source: https://exaly.com/author-pdf/5023509/bin-chen-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

8,185 80 240 49 h-index g-index citations papers 252 9,717 7.2 7.03 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
240	Energy and material flows of megacities. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 5985-90	11.5	303
239	Urban energy consumption: Different insights from energy flow analysis, inputButput analysis and ecological network analysis. <i>Applied Energy</i> , 2015 , 138, 99-107	10.7	256
238	Spatial distribution and ecological risk assessment of heavy metals in surface sediments from a typical plateau lake wetland, China. <i>Ecological Modelling</i> , 2011 , 222, 301-306	3	229
237	Urban energy Water nexus: A network perspective. <i>Applied Energy</i> , 2016 , 184, 905-914	10.7	228
236	Near-real-time monitoring of global CO emissions reveals the effects of the COVID-19 pandemic. <i>Nature Communications</i> , 2020 , 11, 5172	17.4	204
235	Network environ perspective for urban metabolism and carbon emissions: a case study of Vienna, Austria. <i>Environmental Science & Environmental Science</i>	10.3	187
234	Applying the input-output method to account for water footprint and virtual water trade in the Haihe River basin in China. <i>Environmental Science & Environmental Science & En</i>	10.3	180
233	EnergyWater nexus of urban agglomeration based on multiregional inputButput tables and ecological network analysis: A case study of the BeijingTianjinHebei region. <i>Applied Energy</i> , 2016 , 178, 773-783	10.7	178
232	Linkage analysis for the water nergy nexus of city. Applied Energy, 2017, 189, 770-779	10.7	168
231	Targeted opportunities to address the climatell rade dilemma in China. <i>Nature Climate Change</i> , 2016 , 6, 201-206	21.4	159
230	Energy consumption for water use cycles in different countries: A review. <i>Applied Energy</i> , 2016 , 178, 868-885	10.7	154
229	A holistic low carbon city indicator framework for sustainable development. <i>Applied Energy</i> , 2017 , 185, 1919-1930	10.7	136
228	Urban ecosystem modeling and global change: potential for rational urban management and emissions mitigation. <i>Environmental Pollution</i> , 2014 , 190, 139-49	9.3	117
227	Driving force analysis of the agricultural water footprint in China based on the LMDI method. <i>Environmental Science & Environmental Science & Environ</i>	10.3	105
226	Nonzero-Sum Relationships in Mitigating Urban Carbon Emissions: A Dynamic Network Simulation. <i>Environmental Science & Environmental Science & Environ</i>	10.3	102
225	Rural energy in China: Pattern and policy. <i>Renewable Energy</i> , 2009 , 34, 2813-2823	8.1	101
224	Urban energyWater nexus based on modified inputButput analysis. <i>Applied Energy</i> , 2017 , 196, 208-217	10.7	97

(2018-2015)

Ecological network analysis for a virtual water network. <i>Environmental Science & Ecology</i> , 2015 , 49, 6722-30	10.3	97
Ecological network analysis for carbon metabolism of eco-industrial parks: a case study of a typical eco-industrial park in Beijing. <i>Environmental Science & Ecohnology</i> , 2015 , 49, 7254-64	10.3	92
Driving force analysis of water footprint change based on extended STIRPAT model: Evidence from the Chinese agricultural sector. <i>Ecological Indicators</i> , 2014 , 47, 43-49	5.8	86
EnergyWater nexus of international energy trade of China. <i>Applied Energy</i> , 2017 , 194, 725-734	10.7	86
Ecological risk assessment on the system scale: A review of state-of-the-art models and future perspectives. <i>Ecological Modelling</i> , 2013 , 250, 25-33	3	85
Information-based Network Environ Analysis: A system perspective for ecological risk assessment. <i>Ecological Indicators</i> , 2011 , 11, 1664-1672	5.8	85
Life-cycle energy production and emissions mitigation by comprehensive biogas-digestate utilization. <i>Bioresource Technology</i> , 2012 , 114, 357-64	11	83
Prevention and control policy analysis for energy-related regional pollution management in China. <i>Applied Energy</i> , 2016 , 166, 292-300	10.7	82
Tracking Inter-Regional Carbon Flows: A Hybrid Network Model. <i>Environmental Science & Environmental Science & Technology</i> , 2016 , 50, 4731-41	10.3	81
Clean air for some: Unintended spillover effects of regional air pollution policies. <i>Science Advances</i> , 2019 , 5, eaav4707	14.3	80
Sustainability and future alternatives of biogas-linked agrosystem (BLAS) in China: An emergy synthesis. <i>Renewable and Sustainable Energy Reviews</i> , 2012 , 16, 3948-3959	16.2	78
Monitoring trends of urban development and environmental impact of Beijing, 1999-2006. <i>Science of the Total Environment</i> , 2011 , 409, 3295-308	10.2	76
Assessing the energy-saving effect of urbanization in China based on stochastic impacts by regression on population, affluence and technology (STIRPAT) model. <i>Journal of Cleaner Production</i> , 2017 , 163, S306-S314	10.3	75
EnergyWater nexus of wind power generation systems. <i>Applied Energy</i> , 2016 , 169, 1-13	10.7	72
Ecological network analysis on global virtual water trade. <i>Environmental Science & Environmental Scie</i>	10.3	72
The driving force of water footprint under the rapid urbanization process: a structural decomposition analysis for Zhangye city in China. <i>Journal of Cleaner Production</i> , 2017 , 163, S322-S328	10.3	67
Embodiment of virtual water of power generation in the electric power system in China. <i>Applied Energy</i> , 2015 , 151, 345-354	10.7	67
Multiregional inputButput and ecological network analyses for regional energyWater nexus within China. <i>Applied Energy</i> , 2018 , 227, 353-364	10.7	64
	Ecological network analysis for carbon metabolism of eco-industrial parks: a case study of a typical eco-industrial park in Beijing. Environmental Science & Amp; Technology, 2015, 49, 7254-64 Driving force analysis of water footprint change based on extended STIRPAT model: Evidence from the Chinese agricultural sector. Ecological Indicators, 2014, 47, 43-49 EnergyWater nexus of international energy trade of China. Applied Energy, 2017, 194, 725-734 Ecological risk assessment on the system scale: A review of state-of-the-art models and future perspectives. Ecological Modelling, 2013, 250, 25-33 Information-based Network Environ Analysis: A system perspective for ecological risk assessment. Ecological Indicators, 2011, 11, 1664-1672 Life-cycle energy production and emissions mitigation by comprehensive biogas-digestate utilization. Bioresource Technology, 2012, 114, 357-64 Prevention and control policy analysis for energy-related regional pollution management in China. Applied Energy, 2016, 166, 292-300 Tracking Inter-Regional Carbon Flows: A Hybrid Network Model. Environmental Science & Emp; Technology, 2016, 50, 4731-41 Clean air for some: Unintended spillover effects of regional air pollution policies. Science Advances, 2019, 5, eaav4707 Sustainability and future alternatives of biogas-linked agrosystem (BLAS) in China: An emergy synthesis. Renewable and Sustainable Energy Reviews, 2012, 16, 3948-3959 Monitoring trends of urban development and environmental impact of Beijing, 1999-2006. Science of the Total Environment, 2011, 409, 3295-308 Monitoring trends of urban development and environmental impact of Beijing, 1999-2006. Science of the Total Environment, 2011, 409, 3295-308 Assessing the energy-saving effect of urbanization in China based on stochastic impacts by regression on population, affluence and technology (STIRPAT) model. Journal of Cleaner Production, 2017, 163, S306-S314 EnergyWater nexus of wind power generation systems. Applied Energy, 2016, 169, 1-13 Ecological network analysis o	Ecological network analysis for carbon metabolism of eco-industrial parks: a case study of a typical eco-industrial park in Beijing. Environmental Science & Environmental Sci

205	Changing Lifestyles Towards a Low Carbon Economy: An IPAT Analysis for China. <i>Energies</i> , 2012 , 5, 22-3	313.1	63
204	Emergy analysis of a biogas-linked agricultural system in rural China 🖪 case study in Gongcheng Yao Autonomous County. <i>Applied Energy</i> , 2014 , 118, 173-182	10.7	62
203	EnergyWater nexus under energy mix scenarios using inputButput and ecological network analyses. <i>Applied Energy</i> , 2019 , 233-234, 827-839	10.7	61
202	Assessing the cumulative environmental impact of hydropower construction on river systems based on energy network model. <i>Renewable and Sustainable Energy Reviews</i> , 2015 , 42, 78-92	16.2	60
201	Dynamic monitoring of the Poyang Lake wetland by integrating Landsat and MODIS observations. <i>ISPRS Journal of Photogrammetry and Remote Sensing</i> , 2018 , 139, 75-87	11.8	59
200	Dynamic monitoring of wetland cover changes using time-series remote sensing imagery. <i>Ecological Informatics</i> , 2014 , 24, 17-26	4.2	58
199	Emergy-based dynamic mechanisms of urban development, resource consumption and environmental impacts. <i>Ecological Modelling</i> , 2014 , 271, 90-102	3	57
198	Global warming impact assessment of a crop residue gasification project dynamic LCA perspective. <i>Applied Energy</i> , 2014 , 122, 269-279	10.7	57
197	Interregional carbon flows of China. <i>Applied Energy</i> , 2018 , 227, 342-352	10.7	56
196	Consumption-based greenhouse gas emissions accounting with capital stock change highlights dynamics of fast-developing countries. <i>Nature Communications</i> , 2018 , 9, 3581	17.4	56
195	Drivers of CO2 emissions from power generation in China based on modified structural decomposition analysis. <i>Journal of Cleaner Production</i> , 2019 , 220, 1143-1155	10.3	55
194	Life-cycle environmental impact analysis of a typical cement production chain. <i>Applied Energy</i> , 2016 , 164, 916-923	10.7	54
193	Constructing a network of the social-economic consumption system of China using extended exergy analysis. <i>Renewable and Sustainable Energy Reviews</i> , 2012 , 16, 4796-4808	16.2	54
192	Ecological network analysis of the virtual water network within China® electric power system during 2007®012. <i>Applied Energy</i> , 2016 , 168, 110-121	10.7	53
191	Two-decade wetland cultivation and its effects on soil properties in salt marshes in the Yellow River Delta, China. <i>Ecological Informatics</i> , 2012 , 10, 49-55	4.2	49
190	Biotechnological Advances for Restoring Degraded Land for Sustainable Development. <i>Trends in Biotechnology</i> , 2017 , 35, 847-859	15.1	48
189	How Green Transition of Energy System Impacts China's Mercury Emissions. <i>Earthp</i> Future, 2019 , 7, 140)7 7 19416	5 48
188	Linkage analysis for water-carbon nexus in China. <i>Applied Energy</i> , 2018 , 225, 682-695	10.7	48

(2013-2013)

187	Net energy production and emissions mitigation of domestic wastewater treatment system: a comparison of different biogas-sludge use alternatives. <i>Bioresource Technology</i> , 2013 , 144, 296-303	11	47	
186	Pathways for sustainable energy transition. <i>Journal of Cleaner Production</i> , 2019 , 228, 1564-1571	10.3	44	
185	Assessment of energy security in China based on ecological network analysis: A perspective from the security of crude oil supply. <i>Energy Policy</i> , 2014 , 74, 406-413	7.2	44	
184	Estimating Energy Consumption of Transport Modes in China Using DEA. Sustainability, 2015, 7, 4225-42	23,8	44	
183	Changing Urban Carbon Metabolism over Time: Historical Trajectory and Future Pathway. <i>Environmental Science & Environmental S</i>	10.3	43	
182	Sustainability-based economic and ecological evaluation of a rural biogas-linked agro-ecosystem. <i>Renewable and Sustainable Energy Reviews</i> , 2015 , 41, 347-355	16.2	42	
181	Real-Time Estimation of Population Exposure to PM Using Mobile- and Station-Based Big Data. <i>International Journal of Environmental Research and Public Health</i> , 2018 , 15,	4.6	42	
180	Energy efficiency and sustainability of complex biogas systems: A 3-level emergetic evaluation. <i>Applied Energy</i> , 2014 , 115, 151-163	10.7	42	
179	Coupling of carbon and energy flows in cities: A meta-analysis and nexus modelling. <i>Applied Energy</i> , 2017 , 194, 774-783	10.7	42	
178	Ecological accounting for China based on extended exergy. <i>Renewable and Sustainable Energy Reviews</i> , 2014 , 37, 334-347	16.2	41	
177	Scenarios for sewage sludge reduction and reuse in clinker production towards regional eco-industrial development: a comparative emergy-based assessment. <i>Journal of Cleaner Production</i> , 2015 , 103, 371-383	10.3	39	
176	Comparing national environmental and economic performances through emergy sustainability indicators: Moving environmental ethics beyond anthropocentrism toward ecocentrism. <i>Renewable and Sustainable Energy Reviews</i> , 2016 , 58, 1532-1542	16.2	38	
175	Contaminant transport in a two-zone wetland: Dispersion and ecological degradation. <i>Journal of Hydrology</i> , 2013 , 488, 118-125	6	38	
174	Evaluation of a Low-Carbon City: Method and Application. <i>Entropy</i> , 2013 , 15, 1171-1185	2.8	38	
173	Tracking carbon transfers embodied in Chinese municipalities' domestic and foreign trade. <i>Journal of Cleaner Production</i> , 2018 , 192, 950-960	10.3	38	
172	Ecological network analysis of embodied particulate matter 2.5 🖪 case study of Beijing. <i>Applied Energy</i> , 2016 , 184, 882-888	10.7	37	
171	Network environ analysis for socio-economic water system. <i>Ecological Indicators</i> , 2014 , 47, 80-88	5.8	36	
170	Decomposition Analysis of Energy-Related Industrial CO2 Emissions in China. <i>Energies</i> , 2013 , 6, 2319-232	3,71	36	

169	Emergy-based sustainability evaluation of wind power generation systems. <i>Applied Energy</i> , 2016 , 177, 239-246	10.7	36
168	Human health impact and economic effect for PM2.5 exposure in typical cities. <i>Applied Energy</i> , 2019 , 249, 316-325	10.7	35
167	Physical and virtual carbon metabolism of global cities. <i>Nature Communications</i> , 2020 , 11, 182	17.4	35
166	Life cycle assessment of coupling household biogas production to agricultural industry: A case study of biogas-linked persimmon cultivation and processing system. <i>Energy Policy</i> , 2013 , 62, 707-716	7.2	34
165	Modelling a thermodynamic-based comparative framework for urban sustainability: Incorporating economic and ecological losses into emergy analysis. <i>Ecological Modelling</i> , 2013 , 252, 280-287	3	34
164	Low-Carbon Development Patterns: Observations of Typical Chinese Cities. <i>Energies</i> , 2012 , 5, 291-304	3.1	34
163	Accounting global grey water footprint from both consumption and production perspectives. Journal of Cleaner Production, 2019 , 225, 963-971	10.3	33
162	ENA-based evaluation of energy supply security: Comparison between the Chinese crude oil and natural gas supply systems. <i>Renewable and Sustainable Energy Reviews</i> , 2017 , 72, 888-899	16.2	32
161	A three-scale input-output analysis of water use in a regional economy: Hebei province in China. <i>Journal of Cleaner Production</i> , 2017 , 156, 962-974	10.3	32
160	Integrated evaluation of embodied energy, greenhouse gas emission and economic performance of a typical wind farm in China. <i>Renewable and Sustainable Energy Reviews</i> , 2013 , 27, 559-568	16.2	32
159	Carbon footprint accounting of a typical wind farm in China. <i>Applied Energy</i> , 2016 , 180, 416-423	10.7	32
158	Ecological accounting based on extended exergy: a sustainability perspective. <i>Environmental Science & Environmental &</i>	10.3	31
157	Quantitative estimation of 21st-century urban greenspace changes in Chinese populous cities. <i>Science of the Total Environment</i> , 2017 , 609, 956-965	10.2	30
156	Urban metabolism and nexus. <i>Ecological Informatics</i> , 2015 , 26, 1-2	4.2	29
155	A review of industrial symbiosis research: theory and methodology. <i>Frontiers of Earth Science</i> , 2015 , 9, 91-104	1.7	28
154	PM2.5 footprint of household energy consumption. <i>Applied Energy</i> , 2018 , 227, 375-383	10.7	28
153	Water-energy scarcity nexus risk in the national trade system based on multiregional input-output and network environ analyses. <i>Applied Energy</i> , 2020 , 268, 114974	10.7	27
152	Social network analysis and network connectedness analysis for industrial symbiotic systems: model development and case study. <i>Frontiers of Earth Science</i> , 2013 , 7, 169-181	1.7	27

151	The 2020 China report of the Lancet Countdown on health and climate change. <i>Lancet Public Health, The</i> , 2021 , 6, e64-e81	22.4	27	
150	Sustainability accounting of a household biogas project based on emergy. <i>Applied Energy</i> , 2017 , 194, 819-831	10.7	26	
149	Urban ecological footprint prediction based on the Markov chain. <i>Journal of Cleaner Production</i> , 2017 , 163, 146-153	10.3	26	
148	Unfolding the interplay between carbon flows and socioeconomic development in a city: What can network analysis offer?. <i>Applied Energy</i> , 2018 , 211, 403-412	10.7	26	
147	Comprehensive evaluation of the structural characteristics of an urban metabolic system: Model development and a case study of Beijing. <i>Ecological Modelling</i> , 2013 , 252, 106-113	3	26	
146	Using LMDI method to analyze the change of industrial CO2 emission from energy use in Chongqing. <i>Frontiers of Earth Science</i> , 2011 , 5, 103-109	1.7	26	
145	Water⊟nergy Nexus in China's Electric Power System. <i>Energy Procedia</i> , 2017 , 105, 3972-3977	2.3	25	
144	Global water use associated with energy supply, demand and international trade of China. <i>Applied Energy</i> , 2020 , 257, 113992	10.7	25	
143	Urban nexus: A new paradigm for urban studies. <i>Ecological Modelling</i> , 2015 , 318, 5-7	3	24	
142	LandWaterBnergy nexus in agricultural management for greenhouse gas mitigation. <i>Applied Energy</i> , 2020 , 265, 114796	10.7	24	
141	Chlorophyll a simulation in a lake ecosystem using a model with wavelet analysis and artificial neural network. <i>Environmental Management</i> , 2013 , 51, 1044-54	3.1	24	
140	Extended exergy based ecological accounting for the transportation sector in China. <i>Renewable and Sustainable Energy Reviews</i> , 2014 , 32, 229-237	16.2	24	
139	Driving factors of carbon dioxide emissions in China: an empirical study using 2006-2010 provincial data. <i>Frontiers of Earth Science</i> , 2017 , 11, 156-161	1.7	23	
138	Temporal and Spatial Analysis of Integrated Energy and Environment Efficiency in China Based on a Green GDP Index. <i>Energies</i> , 2011 , 4, 1376-1390	3.1	23	
137	Waterland nexus in food trade based on ecological network analysis. <i>Ecological Indicators</i> , 2019 , 97, 466-475	5.8	22	
136	Emergy evaluation for a low-carbon industrial park. <i>Journal of Cleaner Production</i> , 2017 , 163, S392-S400	10.3	21	
135	Carbon footprint estimation of Chinese economic sectors based on a three-tier model. <i>Renewable and Sustainable Energy Reviews</i> , 2014 , 29, 499-507	16.2	21	
134	Information-based ecological network analysis for carbon emissions. <i>Applied Energy</i> , 2019 , 238, 45-53	10.7	20	

133	Trans-boundary total suspended particulate matter (TSPM) in urban ecosystems. <i>Ecological Modelling</i> , 2015 , 318, 59-63	3	20
132	Evolution of methane emissions in global supply chains during 2000-2012. <i>Resources, Conservation and Recycling</i> , 2019 , 150, 104414	11.9	20
131	Information indices from ecological network analysis for urban metabolic system. <i>Procedia Environmental Sciences</i> , 2010 , 2, 720-724		20
130	Analysis of Resource and Emission Impacts: An Emergy-Based Multiple Spatial Scale Framework for Urban Ecological and Economic Evaluation. <i>Entropy</i> , 2011 , 13, 720-743	2.8	19
129	Urban carbon footprints across scale: Important considerations for choosing system boundaries. <i>Applied Energy</i> , 2020 , 259, 114201	10.7	19
128	How do people in different places experience different levels of air pollution? Using worldwide Chinese as a lens. <i>Environmental Pollution</i> , 2018 , 238, 874-883	9.3	18
127	Recent trend of industrial emissions in developing countries. <i>Applied Energy</i> , 2016 , 166, 187-190	10.7	18
126	Driving factors of water-energy nexus in China. <i>Applied Energy</i> , 2020 , 257, 113984	10.7	18
125	Energy Consumption in Urban Water Cycle. <i>Energy Procedia</i> , 2016 , 104, 123-128	2.3	18
124	Interdependence between energy and metals in China: evidence from a nexus perspective. <i>Journal of Cleaner Production</i> , 2019 , 214, 345-355	10.3	18
123	Dynamic Carbon Emission Linkages Across Boundaries. <i>Earthp</i> Future, 2019 , 7, 197-209	7.9	17
122	Driving force analysis of the consumption of water and energy in China based on LMDI method. <i>Energy Procedia</i> , 2019 , 158, 4318-4322	2.3	16
121	A comparative study of Beijing and three global cities: A perspective on urban livability. <i>Frontiers of Earth Science</i> , 2011 , 5, 323	1.7	16
120	Identifying hotspots of sectors and supply chain paths for electricity conservation in China. <i>Journal of Cleaner Production</i> , 2020 , 251, 119653	10.3	16
119	Energy footprint pathways of China. <i>Energy</i> , 2019 , 180, 330-340	7.9	15
118	Urban energy consumption and related carbon emission estimation: a study at the sector scale. <i>Frontiers of Earth Science</i> , 2013 , 7, 480-486	1.7	15
117	Ecological network analysis for a low-carbon and high-tech industrial park. <i>Scientific World Journal, The</i> , 2012 , 2012, 305474	2.2	15
116	Integrated ecological modelling for sustainable urban metabolism and management. <i>Ecological Modelling</i> , 2015 , 318, 1-4	3	14

115	Three-Tier carbon accounting model for cities. <i>Applied Energy</i> , 2018 , 229, 163-175	10.7	14
114	Regional water@nergyfbood nexus in China based on multiregional inputButput analysis. <i>Energy Procedia</i> , 2017 , 142, 3108-3114	2.3	14
113	A Hybrid Life-cycle Assessment of CO2 Emissions of a PV Water Pumping System in China. <i>Energy Procedia</i> , 2014 , 61, 2871-2875	2.3	14
112	Ecosystem health pattern analysis of urban clusters based on emergy synthesis: Results and implication for management. <i>Energy Policy</i> , 2013 , 59, 600-613	7.2	14
111	The cumulative effects of dam project on river ecosystem based on multi-scale ecological network analysis. <i>Procedia Environmental Sciences</i> , 2011 , 5, 12-17		14
110	Extended exergy-based ecological accounting of China during 2000-2007. <i>Procedia Environmental Sciences</i> , 2011 , 5, 87-95		14
109	The variations of exergies and structural exergies along eutrophication gradients in Chinese and Italian lakes. <i>Ecological Modelling</i> , 2011 , 222, 337-350	3	14
108	Extended exergy-based urban ecosystem network analysis: a case study of Beijing, China. <i>Procedia Environmental Sciences</i> , 2010 , 2, 243-251		14
107	Spillover risk analysis of virtual water trade based on multi-regional input-output model -A case study. <i>Journal of Environmental Management</i> , 2020 , 275, 111242	7.9	14
106	Energy-Water Nexus in Urban Industrial System. <i>Energy Procedia</i> , 2016 , 88, 212-217	2.3	14
105	Network perspective of embodied PM2.5 🖪 case study. <i>Journal of Cleaner Production</i> , 2017 , 142, 3322-	3 3 3.13	13
104	Urban Ecosystem Health Assessment and Its Application in Management: A Multi-Scale Perspective. <i>Entropy</i> , 2013 , 15, 1-9	2.8	13
103	Scenario analysis and path selection of low-carbon transformation in China based on a modified IPAT model. <i>PLoS ONE</i> , 2013 , 8, e77699	3.7	13
102	Relative urban ecosystem health assessment: a method integrating comprehensive evaluation and detailed analysis. <i>EcoHealth</i> , 2010 , 7, 459-72	3.1	13
101	Three-scale input-output analysis for energy and water consumption in urban agglomeration. Journal of Cleaner Production, 2020 , 268, 122148	10.3	13
100	Analysis of global energy consumption inequality by using Lorenz curve. <i>Energy Procedia</i> , 2018 , 152, 75	0-27.5/5	13
99	Eco-indicators for urban metabolism. <i>Ecological Indicators</i> , 2014 , 47, 5-6	5.8	12
98	Dynamic forecasting of agricultural water footprint based on Markov Chain-a case study of the Heihe River Basin. <i>Ecological Modelling</i> , 2017 , 353, 150-157	3	12

97	LCA-based Carbon Footprint of a Typical Wind Farm in China. <i>Energy Procedia</i> , 2016 , 88, 250-256	2.3	12
96	Application of Extreme Learning Machine for Predicting Chlorophyll-a Concentration Inartificial Upwelling Processes. <i>Mathematical Problems in Engineering</i> , 2019 , 2019, 1-11	1.1	11
95	Embodied energy in service industry in global cities: A study of six Asian cities. <i>Land Use Policy</i> , 2020 , 91, 104264	5.6	11
94	Urban land-carbon nexus based on ecological network analysis. <i>Applied Energy</i> , 2020 , 276, 115465	10.7	11
93	Co-benefits of CO2 and PM2.5 Emission Reduction. <i>Energy Procedia</i> , 2016 , 104, 92-97	2.3	11
92	Assessing inter-city ecological and economic relations: An emergy-based conceptual model. <i>Frontiers of Earth Science</i> , 2011 , 5, 97-102	1.7	10
91	Examination of wetlands system using ecological network analysis: A case study of Baiyangdian Basin, China. <i>Procedia Environmental Sciences</i> , 2010 , 2, 427-439		10
90	Ecological risk assessment of hydropower dam construction based on ecological network analysis. <i>Procedia Environmental Sciences</i> , 2010 , 2, 725-728		10
89	Ecological Network Analysis of Embodied Energy Exchanges Among the Seven Regions of China. <i>Journal of Industrial Ecology</i> , 2016 , 20, 472-483	7.2	10
88	Greenhouse gas emission accounting and management of low-carbon community. <i>Scientific World Journal, The</i> , 2012 , 2012, 613721	2.2	9
87	Evaluation of the changed properties of aquatic animals after dam construction using ecological network analysis. <i>Procedia Environmental Sciences</i> , 2011 , 5, 114-119		9
86	An embodied energy perspective of urban economy: A three-scale analysis for Beijing 2002-2012 with headquarter effect. <i>Science of the Total Environment</i> , 2020 , 732, 139097	10.2	9
85	Production-based and Consumption-based Carbon Emissions of Beijing: Trend and Features. <i>Energy Procedia</i> , 2016 , 104, 171-176	2.3	9
84	Global Urban Carbon Networks: Linking Inventory to Modeling. <i>Environmental Science & Emp; Technology</i> , 2020 , 54, 5790-5801	10.3	8
83	Analysis of urban metabolic processes based on input-output method: model development and a case study for Beijing. <i>Frontiers of Earth Science</i> , 2014 , 8, 190-201	1.7	8
82	Carbon Metabolism in Urban Communities. <i>Energy Procedia</i> , 2015 , 75, 2969-2973	2.3	8
81	Extended exergy analysis of urban socioeconomic system: a case study of Beijing, 1996-2006. <i>International Journal of Exergy</i> , 2011 , 9, 168	1.2	8
80	Impacts of biogas projects on agro-ecosystem in rural areas 🖪 case study of Gongcheng. <i>Frontiers of Earth Science</i> , 2011 , 5, 317	1.7	8

79	Energy-water-carbon Nexus at Urban Scale. Energy Procedia, 2016, 104, 183-190	2.3	8
78	Ternary emergetic environmental performance auditing of a typical industrial park in Beijing. <i>Journal of Cleaner Production</i> , 2017 , 163, 128-135	10.3	7
77	A three-scale input-output analysis of blue and grey water footprint for Beijing-Tianjin-Hebei Urban Agglomeration. <i>Energy Procedia</i> , 2019 , 158, 4049-4054	2.3	7
76	Globalized energy-water nexus through international trade: The dominant role of non-energy commodities for worldwide energy-related water use. <i>Science of the Total Environment</i> , 2020 , 736, 1395	5 8 2 ^{.2}	7
75	Modelling Carbon-energy Metabolism of Cities: A Systems Approach. <i>Energy Procedia</i> , 2016 , 88, 31-37	2.3	7
74	Urban Studies Based on Emergy 🖪 Review in Perspective of Causality. <i>Energy Procedia</i> , 2014 , 61, 2546-2	2 <u>54</u> 9	7
73	Evaluating ecological and economic benefits of a low-carbon industrial park based on millennium ecosystem assessment framework. <i>Scientific World Journal, The,</i> 2012 , 2012, 909317	2.2	7
72	Modelling for multi-scale ecosystems in the context of global climate change. <i>Ecological Modelling</i> , 2013 , 252, 1-2	3	7
71	Modeling the purification effects of the constructed Sphagnum wetland on phosphorus and heavy metals in Dajiuhu Wetland Reserve, China. <i>Ecological Modelling</i> , 2013 , 252, 23-31	3	7
70	Systematic studies on wetlands in China. <i>Ecological Modelling</i> , 2011 , 222, 221-223	3	7
70 69	Systematic studies on wetlands in China. <i>Ecological Modelling</i> , 2011 , 222, 221-223 Study on sustainable water use of the Haihe River Basin using ecological network analysis. <i>Frontiers of Earth Science</i> , 2009 , 3, 419-430	3	7
	Study on sustainable water use of the Haihe River Basin using ecological network analysis. <i>Frontiers</i>	3-7	
69	Study on sustainable water use of the Haihe River Basin using ecological network analysis. <i>Frontiers of Earth Science</i> , 2009 , 3, 419-430 Simulation of nitrogen contaminant transportation by a compact difference scheme in the downstream Yellow River, China. <i>Communications in Nonlinear Science and Numerical Simulation</i> ,		7
69 68	Study on sustainable water use of the Haihe River Basin using ecological network analysis. <i>Frontiers of Earth Science</i> , 2009 , 3, 419-430 Simulation of nitrogen contaminant transportation by a compact difference scheme in the downstream Yellow River, China. <i>Communications in Nonlinear Science and Numerical Simulation</i> , 2009 , 14, 935-945 The evolution of China® provincial shared producer and consumer responsibilities for	3.7	7
69 68 67	Study on sustainable water use of the Haihe River Basin using ecological network analysis. <i>Frontiers of Earth Science</i> , 2009 , 3, 419-430 Simulation of nitrogen contaminant transportation by a compact difference scheme in the downstream Yellow River, China. <i>Communications in Nonlinear Science and Numerical Simulation</i> , 2009 , 14, 935-945 The evolution of China® provincial shared producer and consumer responsibilities for energy-related mercury emissions. <i>Journal of Cleaner Production</i> , 2020 , 245, 118678	3.7	7 7 7
69 68 67 66	Study on sustainable water use of the Haihe River Basin using ecological network analysis. <i>Frontiers of Earth Science</i> , 2009 , 3, 419-430 Simulation of nitrogen contaminant transportation by a compact difference scheme in the downstream Yellow River, China. <i>Communications in Nonlinear Science and Numerical Simulation</i> , 2009 , 14, 935-945 The evolution of China® provincial shared producer and consumer responsibilities for energy-related mercury emissions. <i>Journal of Cleaner Production</i> , 2020 , 245, 118678 Accounting of SO2 Emissions from Combustion in Industrial Boilers. <i>Energy Procedia</i> , 2016 , 88, 325-329 Accounting framework of energy-water nexus technologies based on 3 scope hybrid life cycle	3.7 10.3 2.3	7 7 7
69 68 67 66 65	Study on sustainable water use of the Haihe River Basin using ecological network analysis. <i>Frontiers of Earth Science</i> , 2009 , 3, 419-430 Simulation of nitrogen contaminant transportation by a compact difference scheme in the downstream Yellow River, China. <i>Communications in Nonlinear Science and Numerical Simulation</i> , 2009 , 14, 935-945 The evolution of China® provincial shared producer and consumer responsibilities for energy-related mercury emissions. <i>Journal of Cleaner Production</i> , 2020 , 245, 118678 Accounting of SO2 Emissions from Combustion in Industrial Boilers. <i>Energy Procedia</i> , 2016 , 88, 325-329 Accounting framework of energy-water nexus technologies based on 3 scope hybrid life cycle analysis. <i>Energy Procedia</i> , 2019 , 158, 4104-4108 Inequality of air pollution and carbon emission embodied in inter-regional transport. <i>Energy</i>	3.7 10.3 2.3 2.3	7 7 7 7 6

61	Life-cycle-based multicriteria sustainability evaluation of industrial parks: a case study in China. <i>Scientific World Journal, The</i> , 2012 , 2012, 917830	2.2	6
60	An emergy-based analysis of urban ecosystem health characteristics for Beijing city. <i>International Journal of Exergy</i> , 2011 , 9, 192	1.2	6
59	Tracking the carbon footprint of China's coal-fired power system. <i>Resources, Conservation and Recycling</i> , 2022 , 177, 105964	11.9	6
58	Multi-regional input-output and linkage analysis for water-PM2.5 nexus. <i>Applied Energy</i> , 2020 , 268, 115	0 18 .7	6
57	Drivers of energy-related PM2.5 emissions in the Jing-Jin-Ji region between 2002 and 2015. <i>Applied Energy</i> , 2021 , 288, 116668	10.7	6
56	Dynamic Hybrid Life Cycle Assessment of CO2 Emissions of a Typical Biogas Project. <i>Energy Procedia</i> , 2016 , 104, 396-401	2.3	6
55	Communal carbon metabolism: methodology and case study. <i>Journal of Cleaner Production</i> , 2017 , 163, S315-S321	10.3	5
54	Water-energy nexus based on modified multiregional input-output model within China. <i>Energy Procedia</i> , 2019 , 158, 4092-4098	2.3	5
53	Optimization of electricity generation pattern in China from perspective of water scarcity. <i>Energy Procedia</i> , 2019 , 158, 3872-3877	2.3	5
52	Indicators for an expanded business operations model to evaluate eco-smart corporate communities. <i>Ecological Indicators</i> , 2014 , 47, 137-148	5.8	5
51	Linkages Analysis for Water-carbon Nexus in Urban System. <i>Energy Procedia</i> , 2017 , 105, 3876-3880	2.3	5
50	Energy-water Nexus in Beijing: Causality Analysis and Scenario Analysis. <i>Energy Procedia</i> , 2017 , 105, 396	5 6 -397	15
49	Identifying critical sectors and supply chain paths for virtual water and energy-related water trade in China. <i>Applied Energy</i> , 2021 , 299, 117294	10.7	5
48	Emergy-based Cost-benefit Analysis for Urban Biogas Project. <i>Energy Procedia</i> , 2016 , 88, 119-125	2.3	4
47	Emergy Analysis and Assessment for a High-end Industrial Park. <i>Energy Procedia</i> , 2015 , 75, 2953-2956	2.3	4
46	Embodied Water Consumption of Biogasdigestate Utilization. <i>Energy Procedia</i> , 2014 , 61, 615-618	2.3	4
45	Achieving carbon neutrality enables China to attain its industrial water-use target. One Earth, 2022,	8.1	4
44	Inter-country Energy Trade Analysis Based on Ecological Network Analysis. <i>Energy Procedia</i> , 2016 , 104, 580-584	2.3	4

43	The electricity-water nexus in Chinese electric trade system. Energy Procedia, 2018, 152, 247-252	2.3	4
42	The energy-water nexus in interregional economic trade from both consumption and production perspectives. <i>Energy Procedia</i> , 2018 , 152, 281-286	2.3	4
41	Driving Forces of Particulate Matter Emissions in China. <i>Energy Procedia</i> , 2017 , 105, 4601-4606	2.3	3
40	Township ecosystem health assessment based on fuzzy synthesis evaluation method: a case study of Tongzhou District, Beijing, China. <i>Frontiers of Earth Science</i> , 2009 , 3, 312-319		3
39	Exploring Improvement Paths for Eight Industrial Symbiosis Complexes throughout the World. <i>Journal of Environmental Accounting and Management</i> , 2013 , 1, 295-306	2	3
38	Tracking embodied water uses and GHG emissions along Chinese supply chains. <i>Journal of Cleaner Production</i> , 2021 , 288, 125590	10.3	3
37	Information-based Ecological Network Analysis for Embodied Carbon Network in China. <i>Energy Procedia</i> , 2016 , 104, 574-579	2.3	3
36	Scarce Water Footprint of Energy Production in China. <i>Energy Procedia</i> , 2016 , 88, 176-181	2.3	3
35	Unraveling energy water nexus paths in urban agglomeration: A case study of Beijing water in Eastern Beijing water nexus paths in urban agglomeration: A case study of Beijing water nexus paths in urban agglomeration: A case study of Beijing water nexus paths in urban agglomeration: A case study of Beijing water nexus paths in urban agglomeration: A case study of Beijing water nexus paths in urban agglomeration: A case study of Beijing water nexus paths in urban agglomeration: A case study of Beijing water nexus paths in urban agglomeration: A case study of Beijing water nexus paths in urban agglomeration: A case study of Beijing water nexus paths in urban agglomeration: A case study of Beijing water nexus paths in urban agglomeration: A case study of Beijing water nexus paths in urban agglomeration: A case study of Beijing water nexus paths in urban agglomeration: A case study of Beijing water nexus paths in urban agglomeration: A case study of Beijing water nexus paths in urban agglomeration water nexus p	10.7	3
34	Sustainable Urban Metabolism 2015 , 1-8		2
34	Sustainable Urban Metabolism 2015, 1-8 Urban public health assessment and pattern analysis: comparison of four cities in different countries. Frontiers of Earth Science, 2013, 7, 191-198	1.7	2
	Urban public health assessment and pattern analysis: comparison of four cities in different	1.7	
33	Urban public health assessment and pattern analysis: comparison of four cities in different countries. <i>Frontiers of Earth Science</i> , 2013 , 7, 191-198 Embodied carbon emission analysis of ecolhdustrial park based on inputButput analysis and		2
33	Urban public health assessment and pattern analysis: comparison of four cities in different countries. <i>Frontiers of Earth Science</i> , 2013 , 7, 191-198 Embodied carbon emission analysis of ecoshdustrial park based on inputButput analysis and ecological network analysis. <i>Energy Procedia</i> , 2017 , 142, 3102-3107 The 2021 China report of the Lancet Countdown on health and climate change: seizing the window	2.3	2
33 32 31	Urban public health assessment and pattern analysis: comparison of four cities in different countries. <i>Frontiers of Earth Science</i> , 2013 , 7, 191-198 Embodied carbon emission analysis of ecoshdustrial park based on inputButput analysis and ecological network analysis. <i>Energy Procedia</i> , 2017 , 142, 3102-3107 The 2021 China report of the Lancet Countdown on health and climate change: seizing the window of opportunity. <i>Lancet Public Health</i> , <i>The</i> , 2021 , 6, e932-e947	2.3	2 2
33 32 31 30	Urban public health assessment and pattern analysis: comparison of four cities in different countries. Frontiers of Earth Science, 2013, 7, 191-198 Embodied carbon emission analysis of ecoIhdustrial park based on inputButput analysis and ecological network analysis. Energy Procedia, 2017, 142, 3102-3107 The 2021 China report of the Lancet Countdown on health and climate change: seizing the window of opportunity. Lancet Public Health, The, 2021, 6, e932-e947 Extended Exergy Accounting for Karachi. Energy Procedia, 2016, 88, 52-57 The Evolution of Cities: BrainsIbr BarasitesIbf Sustainable Production and Consumption	2.3	2 2 2
33 32 31 30 29	Urban public health assessment and pattern analysis: comparison of four cities in different countries. Frontiers of Earth Science, 2013, 7, 191-198 Embodied carbon emission analysis of ecoIndustrial park based on inputButput analysis and ecological network analysis. Energy Procedia, 2017, 142, 3102-3107 The 2021 China report of the Lancet Countdown on health and climate change: seizing the window of opportunity. Lancet Public Health, The, 2021, 6, e932-e947 Extended Exergy Accounting for Karachi. Energy Procedia, 2016, 88, 52-57 The Evolution of Cities: BrainsIbr ParasitesIbf Sustainable Production and Consumption Processes in China. Energy Procedia, 2016, 88, 218-223 Indicators for contaminant transport in a three-layer wetland with wind. Ecological Indicators, 2019,	2.3 22.4 2.3	2 2 2 2

25	Impacts of different low-carbon development pathways on water consumption in China based on input-output analysis. <i>Energy Procedia</i> , 2017 , 142, 3122-3128	2.3	1
24	Biogas Systems in China 2017 ,		1
23	The Societal Costs of Deep Decarbonization in China. <i>Energy Procedia</i> , 2017 , 142, 3115-3121	2.3	1
22	Life Cycle Assessment of Wind Power Generation System 2015 , 1-18		1
21	Two-scale analysis for environmental dispersion in a two-layer wetland. <i>Physics and Chemistry of the Earth</i> , 2015 , 89-90, 91-95	3	1
20	A Sustainability-Oriented Multiobjective Optimization Model for Siting and Sizing Distributed Generation Plants in Distribution Systems. <i>Mathematical Problems in Engineering</i> , 2013 , 2013, 1-11	1.1	1
19	Urban public health: is there a pyramid?. <i>International Journal of Environmental Research and Public Health</i> , 2013 , 10, 490-8	4.6	1
18	Emergy-based sustainability analysis of bioenergy production from marginal and degraded lands of India. <i>Ecological Modelling</i> , 2022 , 466, 109903	3	1
17	Water-energy Control Relationship in Socio-economic System. <i>Energy Procedia</i> , 2016 , 88, 285-289	2.3	1
16	Spatial energy-water nexus through economic trade network. <i>Energy Procedia</i> , 2018 , 152, 307-311	2.3	1
15	Linkages analysis for water-PM2.5 nexus in Beijing. <i>Energy Procedia</i> , 2018 , 152, 725-730	2.3	1
14	Interregional spillover effect of PM2.5 emissions on Northeast China through the national supply chain. <i>Applied Energy</i> , 2021 , 303, 117670	10.7	1
13	Modified linkage analysis for water-land nexus driven by interregional trade. <i>Journal of Cleaner Production</i> , 2022 , 353, 131547	10.3	1
12	Assessing urban low-carbon performance from a metabolic perspective. <i>Science China Earth Sciences</i> , 2021 , 64, 1721	4.6	Ο
11	Multi-objective optimization of energy-water nexus from spatial resource reallocation perspective in China. <i>Applied Energy</i> , 2022 , 314, 118919	10.7	О
10	Water metabolism in the socio-economic system 2018 , 287-300		
9	History of Biogas Production in China 2017 , 1-15		
8	Main Methods 2017 , 17-36		

LIST OF PUBLICATIONS

- 7 Life Cycle Assessment of Biogas Systems **2015**, 1-13
- 6 Environment Emissions of Household Biogas Project **2017**, 49-63
- 5 Economic Assessment of Household Biogas Project **2017**, 75-83
- Energy Evaluation of Household Biogas Project **2017**, 65-73
- 3 Emergy Analysis of Biogas-Linked Agricultural System 2017, 85-136
- Extending the Application of Network Analysis to Ecological Risk Assessment for Aquatic Ecosystems. *Developments in Environmental Modelling*, **2014**, 26, 161-183

О

Blue, green and grey water embodied in food supply chain in China. Energy Procedia, 2018, 152, 287-292 2.3