Halley C Oliveira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5022958/publications.pdf Version: 2024-02-01

HALLEY C OLIVEIDA

#	Article	IF	CITATIONS
1	Nanotechnology Potential in Seed Priming for Sustainable Agriculture. Nanomaterials, 2021, 11, 267.	1.9	162
2	Nitric oxide-releasing chitosan nanoparticles alleviate the effects of salt stress in maize plants. Nitric Oxide - Biology and Chemistry, 2016, 61, 10-19.	1.2	145
3	Nanoencapsulation Enhances the Post-Emergence Herbicidal Activity of Atrazine against Mustard Plants. PLoS ONE, 2015, 10, e0132971.	1.1	132
4	Chitosan nanoparticles as carrier systems for the plant growth hormone gibberellic acid. Colloids and Surfaces B: Biointerfaces, 2017, 150, 141-152.	2.5	128
5	Decreased arginine and nitrite levels in nitrate reductase-deficient Arabidopsis thaliana plants impair nitric oxide synthesis and the hypersensitive response to Pseudomonas syringae. Plant Science, 2006, 171, 34-40.	1.7	127
6	Floral Transition and Nitric Oxide Emission During Flower Development in Arabidopsis thaliana is Affected in Nitrate Reductase-Deficient Plants. Plant and Cell Physiology, 2008, 49, 1112-1121.	1.5	114
7	Polymeric nanoparticles as an alternative for application of gibberellic acid in sustainable agriculture: a field study. Scientific Reports, 2019, 9, 7135.	1.6	90
8	γ-Polyglutamic acid/chitosan nanoparticles for the plant growth regulator gibberellic acid: Characterization and evaluation of biological activity. Carbohydrate Polymers, 2017, 157, 1862-1873.	5.1	83
9	A Mechanistic View of Interactions of a Nanoherbicide with Target Organism. Journal of Agricultural and Food Chemistry, 2019, 67, 4453-4462.	2.4	75
10	Effects of copper oxide nanoparticles on growth of lettuce (Lactuca sativa L.) seedlings and possible implications of nitric oxide in their antioxidative defense. Environmental Monitoring and Assessment, 2020, 192, 232.	1.3	72
11	State of the art of polymeric nanoparticles as carrier systems with agricultural applications: a minireview. Energy, Ecology and Environment, 2018, 3, 137-148.	1.9	71
12	Nitrite reduction and superoxide-dependent nitric oxide degradation by Arabidopsis mitochondria: Influence of external NAD(P)H dehydrogenases and alternative oxidase in the control of nitric oxide levels. Nitric Oxide - Biology and Chemistry, 2009, 21, 132-139.	1.2	63
13	Nitrogen metabolism and translocation in soybean plants subjected to root oxygen deficiency. Plant Physiology and Biochemistry, 2013, 66, 141-149.	2.8	54
14	Post-Emergence Herbicidal Activity of Nanoatrazine Against Susceptible Weeds. Frontiers in Environmental Science, 2018, 6, .	1.5	53
15	Nitrate reductase is required for the transcriptional modulation and bactericidal activity of nitric oxide during the defense response of Arabidopsis thaliana against Pseudomonas syringae. Planta, 2013, 238, 475-486.	1.6	49
16	Nitric oxide signaling and homeostasis in plants: a focus on nitrate reductase and S-nitrosoglutathione reductase in stress-related responses. Revista Brasileira De Botanica, 2013, 36, 89-98.	0.5	46
17	Evaluation of the effects of polymeric chitosan/tripolyphosphate and solid lipid nanoparticles on germination of Zea mays, Brassica rapa and Pisum sativum. Ecotoxicology and Environmental Safety, 2017, 142, 369-374.	2.9	46
18	Nanocapsules Containing Neem (Azadirachta Indica) Oil: Development, Characterization, And Toxicity Evaluation. Scientific Reports, 2017, 7, 5929.	1.6	46

HALLEY C OLIVEIRA

#	Article	IF	CITATIONS
19	The hemibiotrophic cacao pathogen <i>Moniliophthora perniciosa</i> depends on a mitochondrial alternative oxidase for biotrophic development. New Phytologist, 2012, 194, 1025-1034.	3.5	45
20	Atrazine nanoencapsulation improves preâ€emergence herbicidal activity against <i>Bidens pilosa</i> without enhancing longâ€ŧerm residual effect on <i>Glycine max</i> . Pest Management Science, 2020, 76, 141-149.	1.7	44
21	Modulation of mitochondrial activity by S-nitrosoglutathione reductase in Arabidopsis thaliana transgenic cell lines. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 239-247.	0.5	43
22	How nitric oxide donors can protect plants in a changing environment: what we know so far and perspectives. AIMS Molecular Science, 2016, 3, 692-718.	0.3	43
23	Nitric oxide degradation by potato tuber mitochondria: Evidence for the involvement of external NAD(P)H dehydrogenases. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, 470-476.	0.5	42
24	Evaluation of the side effects of poly(epsilon-caprolactone) nanocapsules containing atrazine toward maize plants. Frontiers in Chemistry, 2015, 3, 61.	1.8	41
25	Amino acid recovery does not prevent susceptibility to Pseudomonas syringae in nitrate reductase double-deficient Arabidopsis thaliana plants. Plant Science, 2009, 176, 105-111.	1.7	37
26	Involvement of nitrite in the nitrate-mediated modulation of fermentative metabolism and nitric oxide production of soybean roots during hypoxia. Planta, 2013, 237, 255-264.	1.6	37
27	Effect of oxygen deficiency on nitrogen assimilation and amino acid metabolism of soybean root segments. Amino Acids, 2013, 44, 743-755.	1.2	37
28	Plant growth-promoting bacteria improve leaf antioxidant metabolism of drought-stressed Neotropical trees. Planta, 2020, 251, 83.	1.6	34
29	The potential of nanobiopesticide based on zein nanoparticles and neem oil for enhanced control of agricultural pests. Journal of Pest Science, 2020, 93, 793-806.	1.9	31
30	Enhanced drought tolerance in seedlings of Neotropical tree species inoculated with plant growth-promoting bacteria. Plant Physiology and Biochemistry, 2018, 130, 277-288.	2.8	27
31	Foliar absorption and field herbicidal studies of atrazine-loaded polymeric nanoparticles. Journal of Hazardous Materials, 2021, 418, 126350.	6.5	27
32	Effects of nitric oxide-releasing nanoparticles on neotropical tree seedlings submitted to acclimation under full sun in the nursery. Scientific Reports, 2019, 9, 17371.	1.6	25
33	Seed priming with copperâ€loaded chitosan nanoparticles promotes early growth and enzymatic antioxidant defense of maize (<scp><i>Zea mays</i></scp> L.) seedlings. Journal of Chemical Technology and Biotechnology, 2021, 96, 2176-2184.	1.6	21
34	Nitrate reductase-dependent nitric oxide synthesis in the defense response of Arabidopsis thaliana against Pseudomonas syringae. Tropical Plant Pathology, 2010, 35, 104-107.	0.8	21
35	Nitric oxideâ€releasing nanomaterials: from basic research to potential biotechnological applications in agriculture. New Phytologist, 2022, 234, 1119-1125.	3.5	21
36	Hypoxia-driven changes in glycolytic and tricarboxylic acid cycle metabolites of two nodulated soybean genotypes. Environmental and Experimental Botany, 2017, 133, 118-127.	2.0	19

HALLEY C OLIVEIRA

#	Article	IF	CITATIONS
37	Associative bacteria influence maize (<i>Zea mays</i> L.) growth, physiology and root anatomy under different nitrogen levels. Plant Biology, 2018, 20, 870-878.	1.8	19
38	Light acclimation in nursery: morphoanatomy and ecophysiology of seedlings of three light-demanding neotropical tree species. Revista Brasileira De Botanica, 2016, 39, 19-28.	0.5	18
39	The light and dark sides of nitric oxide: multifaceted roles of nitric oxide in plant responses to light. Journal of Experimental Botany, 2021, 72, 885-903.	2.4	17
40	Morphoanatomy and ecophysiology of tree seedlings in semideciduous forest during high-light acclimation in nursery. Photosynthetica, 2015, 53, 597-608.	0.9	16
41	Nanoencapsulation improves the protective effects of a nitric oxide donor on drought-stressed Heliocarpus popayanensis seedlings. Ecotoxicology and Environmental Safety, 2021, 225, 112713.	2.9	16
42	Nitrate Reductase- and Nitric Oxide-Dependent Activation of Sinapoylglucose:malate sinapoyltransferase in Leaves of Arabidopsis thaliana. Plant and Cell Physiology, 2012, 53, 1607-1616.	1.5	15
43	Nitrite decreases ethanol production by intact soybean roots submitted to oxygen deficiency. Plant Signaling and Behavior, 2013, 8, e23578.	1.2	13
44	Nitrogen use strategies of seedlings from neotropical tree species of distinct successional groups. Plant Physiology and Biochemistry, 2017, 114, 119-127.	2.8	13
45	Acclimation responses to high light by <i>Guazuma ulmifolia</i> Lam. (Malvaceae) leaves at different stages of development. Plant Biology, 2017, 19, 720-727.	1.8	13
46	Nitrogen supplementation improves the high-light acclimation of Guazuma ulmifolia Lam. seedlings. Trees - Structure and Function, 2019, 33, 421-431.	0.9	13
47	Development of a Preemergent Nanoherbicide: From Efficiency Evaluation to the Assessment of Environmental Fate and Risks to Soil Microorganisms. ACS Nanoscience Au, 2022, 2, 307-323.	2.0	12
48	The effect of nitrate assimilation deficiency on the carbon and nitrogen status of Arabidopsis thaliana plants. Amino Acids, 2014, 46, 1121-1129.	1.2	10
49	Future trends in nanotechnology aiming environmental applications. Energy, Ecology and Environment, 2018, 3, 69-71.	1.9	10
50	BRIEF COMMUNICATIONPhotosynthetic light-response curves of light-demanding and shade-tolerant seedlings of neotropical tree species. Photosynthetica, 2019, 57, 470-474.	0.9	9
51	Cyclosporin A inhibits calcium uptake by Citrus sinensis mitochondria. Plant Science, 2007, 172, 665-670.	1.7	8
52	Nitrogen metabolism of Neotropical tree seedlings with contrasting ecological characteristics. Acta Physiologiae Plantarum, 2019, 41, 1.	1.0	7
53	Interaction of Nanoatrazine and Target Organism: Evaluation of Fate and Photosystem II Inhibition in Hydroponically Grown Mustard (<i>Brassica juncea</i>) Plants. Journal of Agricultural and Food Chemistry, 2022, 70, 7644-7652.	2.4	7
54	Mitochondrial Nitric Oxide Synthesis During Plant–Pathogen Interactions: Role of Nitrate Reductase		6

in Providing Substrates. , 2006, , 239-254.

HALLEY C OLIVEIRA

#	Article	IF	CITATIONS
55	Regression models to stratify the copper toxicity responses and tolerance mechanisms of Glycine max (L.) Merr. plants. Planta, 2021, 253, 43.	1.6	6
56	Differential impacts of plant growth-promoting bacteria (PGPB) on seeds of neotropical tree species with contrasting tolerance to shade. Trees - Structure and Function, 2020, 34, 121-132.	0.9	5
57	Different leaf traits provide light-acclimation responses in two neotropical woody species. Theoretical and Experimental Plant Physiology, 2021, 33, 313-327.	1.1	4
58	Phytotoxicity evaluation of poly (É›-caprolactone) nanocapsules prepared using different methods and compositions in Brassica juncea seeds. , 2022, 1, 100003.		4
59	Dose-Dependent Dual Effect of Soil Copper on the Initial Development of Glycine max (L.) Merr. cv. BRS 257 Seedlings. Bulletin of Environmental Contamination and Toxicology, 2020, 105, 553-558.	1.3	3
60	Advances in nano-based delivery systems of micronutrients for a greener agriculture. , 2021, , 111-143.		3
61	Nitrogen use plasticity in response to light intensity in neotropical tree species of distinct functional groups. Physiologia Plantarum, 2021, 172, 2226-2237.	2.6	3
62	Does inoculation with associative bacteria improve tolerance to nitrogen deficiency in seedlings of Neotropical tree species?. Environmental and Experimental Botany, 2021, 189, 104529.	2.0	3
63	Role of Plant Mitochondria in Nitric Oxide Homeostasis During Oxygen Deficiency. , 2014, , 57-74.		3
64	Overview of Nanopesticide Environmental Safety Aspects and Regulatory Issues: The Case of Nanoatrazine. , 2020, , 281-298.		3
65	Potential allelopathic effect of Brachiaria decumbens root exudates on neotropical tree seedlings. Theoretical and Experimental Plant Physiology, 2017, 29, 177-186.	1.1	2
66	Potential Use of Polymeric Particles for theÂRegulation of Plant Growth. , 2019, , 45-66.		2
67	Overview of nitric oxide homeostasis. , 2022, , 3-41.		2
68	Inorganic nitrogen sources alter the root morphology of neotropical tree seedlings from different successional groups. Trees - Structure and Function, 2021, 35, 875-887.	0.9	2
69	Post-emergence herbicidal activity of nanoatrazine against Alternanthera tenella Colla plants compared to other weed species. Heliyon, 2022, 8, e09902.	1.4	2
70	NAD(P)H―and superoxideâ€dependent nitric oxide degradation by rat liver mitochondria. FEBS Letters, 2009, 583, 2276-2280.	1.3	1
71	CONTROL OF VOLUNTEER CORN AS A FUNCTION OF LIGHT RESTRICTION PERIODS AFTER DIQUAT APPLICATION. Revista Caatinga, 2022, 35, 299-307.	0.3	1

72 Copper-Based Nanoparticles for Pesticide Effects. , 2022, , 187-212.

1

#	Article	IF	CITATIONS
73	Phenolic Compounds from Leaves of Cariniana estrellensis (Raddi) Kuntze (Lecythidaceae): A Brazilian Atlantic Forest Tree. Journal of the Brazilian Chemical Society, 0, , .	0.6	0