Christopher L Hinkle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5022078/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Defect-Dominated Doping and Contact Resistance in MoS ₂ . ACS Nano, 2014, 8, 2880-2888.	7.3	690
2	Covalent Nitrogen Doping and Compressive Strain in MoS ₂ by Remote N ₂ Plasma Exposure. Nano Letters, 2016, 16, 5437-5443.	4.5	323
3	Detection of Ga suboxides and their impact on III-V passivation and Fermi-level pinning. Applied Physics Letters, 2009, 94, .	1.5	250
4	Impurities and Electronic Property Variations of Natural MoS ₂ Crystal Surfaces. ACS Nano, 2015, 9, 9124-9133.	7.3	240
5	HfO ₂ on MoS ₂ by Atomic Layer Deposition: Adsorption Mechanisms and Thickness Scalability. ACS Nano, 2013, 7, 10354-10361.	7.3	237
6	Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials. Science, 2018, 362, 665-670.	6.0	208
7	A roadmap for electronic grade 2D materials. 2D Materials, 2019, 6, 022001.	2.0	205
8	HfSe ₂ Thin Films: 2D Transition Metal Dichalcogenides Grown by Molecular Beam Epitaxy. ACS Nano, 2015, 9, 474-480.	7.3	195
9	Half-cycle atomic layer deposition reaction studies of Al2O3 on In0.2Ga0.8As (100) surfaces. Applied Physics Letters, 2008, 93, .	1.5	138
10	van der Waals epitaxy: 2D materials and topological insulators. Applied Materials Today, 2017, 9, 504-515.	2.3	137
11	Interfacial chemistry of oxides on InxGa(1â°'x)As and implications for MOSFET applications. Current Opinion in Solid State and Materials Science, 2011, 15, 188-207.	5.6	119
12	Contact Metal–MoS ₂ Interfacial Reactions and Potential Implications on MoS ₂ -Based Device Performance. Journal of Physical Chemistry C, 2016, 120, 14719-14729.	1.5	114
13	MoS ₂ –Titanium Contact Interface Reactions. ACS Applied Materials & Interfaces, 2016, 8, 8289-8294.	4.0	108
14	Progression of Solid Electrolyte Interphase Formation on Hydrogenated Amorphous Silicon Anodes for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2012, 116, 9072-9077.	1.5	99
15	Nucleation and growth of WSe ₂ : enabling large grain transition metal dichalcogenides. 2D Materials, 2017, 4, 045019.	2.0	96
16	Frequency dispersion reduction and bond conversion on n-type GaAs by in situ surface oxide removal and passivation. Applied Physics Letters, 2007, 91, 163512.	1.5	88
17	Suppression of subcutaneous oxidation during the deposition of amorphous lanthanum aluminate on silicon. Applied Physics Letters, 2004, 84, 4629-4631.	1.5	87
18	WSe ₂ -contact metal interface chemistry and band alignment under high vacuum and ultra high vacuum deposition conditions. 2D Materials, 2017, 4, 025084.	2.0	77

#	Article	IF	CITATIONS
19	Optimisation of the ammonium sulphide (NH4)2S passivation process on In0.53Ga0.47As. Applied Surface Science, 2011, 257, 4082-4090.	3.1	71
20	Interface Chemistry of Contact Metals and Ferromagnets on the Topological Insulator Bi ₂ Se ₃ . Journal of Physical Chemistry C, 2017, 121, 23551-23563.	1.5	71
21	Highâ€Mobility Helical Tellurium Fieldâ€Effect Transistors Enabled by Transferâ€Free, Lowâ€Temperature Direct Growth. Advanced Materials, 2018, 30, e1803109.	11.1	71
22	Evaluation of border traps and interface traps in HfO ₂ /MoS ₂ gate stacks by capacitance–voltage analysis. 2D Materials, 2018, 5, 031002.	2.0	63
23	Indium stability on InGaAs during atomic H surface cleaning. Applied Physics Letters, 2008, 92, .	1.5	62
24	Is interfacial chemistry correlated to gap states for high-k/III–V interfaces?. Microelectronic Engineering, 2011, 88, 1061-1065.	1.1	62
25	Nitrogen bonding, stability, and transport in AlON films on Si. Applied Physics Letters, 2004, 84, 4992-4994.	1.5	56
26	Comparison of n-type and p-type GaAs oxide growth and its effects on frequency dispersion characteristics. Applied Physics Letters, 2008, 93, 113506.	1.5	55
27	Performance enhancement of n-channel inversion type InxGa1â^'xAs metal-oxide-semiconductor field effect transistor using <i>ex situ</i> deposited thin amorphous silicon layer. Applied Physics Letters, 2008, 93, .	1.5	54
28	Effect of post deposition anneal on the characteristics of HfO2/InP metal-oxide-semiconductor capacitors. Applied Physics Letters, 2011, 99, .	1.5	51
29	The significance of core-level electron binding energies on the proper analysis of InGaAs interfacial bonding. Applied Physics Letters, 2009, 95, 151905.	1.5	50
30	W Te ₂ thin films grown by beam-interrupted molecular beam epitaxy. 2D Materials, 2017, 4, 025044.	2.0	48
31	A novel approach for determining the effective tunneling mass of electrons in HfO2 and other high-K alternative gate dielectrics for advanced CMOS devices. Microelectronic Engineering, 2004, 72, 257-262.	1.1	47
32	Interfacial oxide re-growth in thin film metal oxide III-V semiconductor systems. Applied Physics Letters, 2012, 100, .	1.5	47
33	Transition metal dichalcogenide and hexagonal boron nitride heterostructures grown by molecular beam epitaxy. Microelectronic Engineering, 2015, 147, 306-309.	1.1	46
34	Dual-gate MoS2 transistors with sub-10 nm top-gate high-k dielectrics. Applied Physics Letters, 2018, 112,	1.5	42
35	Surface passivation and implications on high mobility channel performance (Invited Paper). Microelectronic Engineering, 2009, 86, 1544-1549.	1.1	41
36	Contact Engineering for Dual-Gate MoS ₂ Transistors Using O ₂ Plasma Exposure. ACS Applied Electronic Materials, 2019, 1, 210-219.	2.0	40

#	Article	IF	CITATIONS
37	Extraction of the Effective Mobility of \$ hbox{In}_{0.53}hbox{Ga}_{0.47}hbox{As}\$MOSFETs. IEEE Electron Device Letters, 2009, 30, 316-318.	2.2	39
38	Tellurium as a successor of silicon for extremely scaled nanowires: a first-principles study. Npj 2D Materials and Applications, 2020, 4, .	3.9	39
39	Impact of Semiconductor and Interface-State Capacitance on Metal/High-k/GaAs Capacitance–Voltage Characteristics. IEEE Transactions on Electron Devices, 2010, 57, 2599-2606.	1.6	38
40	Probing Interface Defects in Top-Gated MoS ₂ Transistors with Impedance Spectroscopy. ACS Applied Materials & Interfaces, 2017, 9, 24348-24356.	4.0	38
41	Electrical and chemical characteristics of Al2O3/InP metal-oxide-semiconductor capacitors. Applied Physics Letters, 2013, 102, 132903.	1.5	37
42	Fermi Level Manipulation through Native Doping in the Topological Insulator Bi ₂ Se ₃ . ACS Nano, 2018, 12, 6310-6318.	7.3	37
43	Schottky Barrier Height of Pd/MoS ₂ Contact by Large Area Photoemission Spectroscopy. ACS Applied Materials & Interfaces, 2017, 9, 38977-38983.	4.0	36
44	Materials for interconnects. MRS Bulletin, 2021, 46, 959-966.	1.7	33
45	Effects of annealing on top-gated MoS2 transistors with HfO2 dielectric. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2017, 35, .	0.6	31
46	Interfacial oxygen and nitrogen induced dipole formation and vacancy passivation for increased effective work functions in TiN/HfO2 gate stacks. Applied Physics Letters, 2010, 96, .	1.5	29
47	<i>In situ</i> surface pre-treatment study of GaAs and In0.53Ga0.47As. Applied Physics Letters, 2012, 100,	1.5	28
48	Remote phonon and surface roughness limited universal electron mobility of In0.53Ga0.47As surface channel MOSFETs. Microelectronic Engineering, 2011, 88, 1083-1086.	1.1	27
49	Two-dimensional electric-double-layer Esaki diode. Npj 2D Materials and Applications, 2019, 3, .	3.9	27
50	Surface Studies of III-V Materials: Oxidation Control and Device Implications. ECS Transactions, 2009, 19, 387-403.	0.3	24
51	Dislocation driven spiral and non-spiral growth in layered chalcogenides. Nanoscale, 2018, 10, 15023-15034.	2.8	24
52	Engineering the Palladium–WSe2 Interface Chemistry for Field Effect Transistors with High-Performance Hole Contacts. ACS Applied Nano Materials, 2019, 2, 75-88.	2.4	24
53	Chemical and electrical characterization of the HfO2/InAlAs interface. Journal of Applied Physics, 2013, 114, .	1.1	22
54	Covalent nitrogen doping in molecular beam epitaxy-grown and bulk WSe2. APL Materials, 2018, 6, .	2.2	21

Christopher L Hinkle

#	Article	IF	CITATIONS
	Origins of Fermi-Level Pinning between Molybdenum Dichalcogenides (MoSe ₂ ,) Tj ETQq1 1 0.78431	4 rgBT	Overlock 10
55	Physical Chemistry C, 2019, 123, 23919-23930.	1.5	20
56	WSe _(2â^' <i>x</i>) Te _{<i>x</i>} alloys grown by molecular beam epitaxy. 2D Materials, 2019, 6, 045027.	2.0	20
57	<i>In situ</i> study of HfO2 atomic layer deposition on InP(100). Applied Physics Letters, 2013, 102, .	1.5	19
58	Chemical bonding and defect states of LPCVD grown silicon-rich Si3N4 for quantum dot applications. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2014, 32, .	0.9	19
59	Molecular Beam Epitaxy of Transition Metal Dichalcogenides. , 2018, , 515-531.		19
60	Origins of Fermi Level Pinning between Tungsten Dichalcogenides (WS2, WTe2) and Bulk Metal Contacts: Interface Chemistry and Band Alignment. Journal of Physical Chemistry C, 2020, 124, 14550-14563.	1.5	19
61	Remote plasma-assisted nitridation (RPN): applications to Zr and Hf silicate alloys and Al2O3. Applied Surface Science, 2003, 216, 124-132.	3.1	17
62	Understanding the Impact of Annealing on Interface and Border Traps in the Cr/HfO ₂ /Al ₂ O ₃ /MoS ₂ System. ACS Applied Electronic Materials, 2019, 1, 1372-1377.	2.0	16
63	Electrical characterization of top-gated molybdenum disulfide metal–oxide–semiconductor capacitors with high-k dielectrics. Microelectronic Engineering, 2015, 147, 151-154.	1.1	15
64	Electron trapping in non-crystalline Ta- and Hf-Aluminates for gate dielectric applications in aggressively scaled silicon devices. Solid-State Electronics, 2002, 46, 1799-1805.	0.8	14
65	In situ study of the role of substrate temperature during atomic layer deposition of HfO2 on InP. Journal of Applied Physics, 2013, 114, 154105.	1.1	14
66	<i>In situ</i> atomic layer deposition study of HfO2 growth on NH4OH and atomic hydrogen treated Al0.25Ga0.75N. Journal of Applied Physics, 2013, 113, .	1.1	14
67	Silicon Interfacial Passivation Layer Chemistry for High- <i>k</i> /InP Interfaces. ACS Applied Materials & Interfaces, 2014, 6, 7340-7345.	4.0	14
68	Gate-last TiN/HfO2 band edge effective work functions using low-temperature anneals and selective cladding to control interface composition. Applied Physics Letters, 2012, 100, .	1.5	13
69	Engineering the interface chemistry for scandium electron contacts in WSe ₂ transistors and diodes. 2D Materials, 2019, 6, 045020.	2.0	13
70	Thermal stability of plasma-nitrided aluminum oxide films on Si. Applied Physics Letters, 2004, 84, 97-99.	1.5	11
71	<i>In situ</i> study of atomic layer deposition Al ₂ O ₃ on GaP (100). Applied Physics Letters, 2013, 103, 121604.	1.5	10
72	Oxide-related defects in quantum dot containing Si-rich silicon nitride films. Thin Solid Films, 2017, 636, 267-272.	0.8	10

Christopher L Hinkle

#	Article	IF	CITATIONS
73	Controlling the Pd Metal Contact Polarity to Trigonal Tellurium by Atomic Hydrogenâ€Removal of the Native Tellurium Oxide. Advanced Materials Interfaces, 2021, 8, 2002050.	1.9	10
74	A spectroscopic study distinguishing between chemical phase separation with different degrees of crystallinity in Hf(Zr) silicate alloys. Applied Surface Science, 2004, 234, 429-433.	3.1	9
75	Impact of Etch Processes on the Chemistry and Surface States of the Topological Insulator Bi ₂ Se ₃ . ACS Applied Materials & Interfaces, 2019, 11, 32144-32150.	4.0	9
76	High-k Oxide Growth on III-V Surfaces: Chemical Bonding and MOSFET Performance. ECS Transactions, 2011, 35, 403-413.	0.3	6
77	PtSi dominated Schottky barrier heights of Ni(Pt)Si contacts due to Pt segregation. Applied Physics Letters, 2013, 102, .	1.5	6
78	On the calculation of effective electric field in In0.53Ga0.47As surface channel metal-oxide-semiconductor field-effect-transistors. Applied Physics Letters, 2011, 98, 193501.	1.5	5
79	Chemical phase separation in Zr silicate alloys: a spectroscopic study distinguishing between chemical phase separation with different degree of micro- and nano-crystallinity. Microelectronic Engineering, 2004, 72, 304-309.	1.1	4
80	Formation of pre-silicide layers below Ni1â^'xPtxSi/Si interfaces. Acta Materialia, 2013, 61, 2481-2488.	3.8	4
81	Comprehensive Capacitance–Voltage Simulation and Extraction Tool Including Quantum Effects for High- \$k\$ on SixGe1â^'x and InxGa1â^'xAs: Part II—Fits and Extraction From Experimental Data. IEEE Transactions on Electron Devices, 2017, 64, 3794-3801.	1.6	4
82	(Invited) Electrical and Physical Properties of High-k Gate Dielectrics on In _x Ga _{1-x} As. ECS Transactions, 2010, 28, 209-219.	0.3	3
83	(Invited) Band-Edge Effective Work Functions by Controlling HfO ₂ /TiN Interfacial Composition for Gate-Last CMOS. ECS Transactions, 2011, 35, 285-295.	0.3	3
84	(Invited) Investigation of Critical Interfaces in Few-Layer MoS2Field Effect Transistors with High-k Dielectrics. ECS Transactions, 2017, 80, 219-225.	0.3	3
85	Comprehensive Capacitance–Voltage Simulation and Extraction Tool Including Quantum Effects for High-k on Si <italic>x</italic> Ge1â^' <italic>x</italic> and In <italic>x</italic> Ga1â^' <italic>x</italic> As: Part I—Model Description and Validation. IEEE Transactions on Electron Devices, 2017, 64, 3786-3793.	1.6	3
86	Electric Double Layer Esaki Tunnel Junction in a 40-nm-Length, WSe2 Channel Grown by Molecular Beam Epitaxy on Al203. , 2018, , .		3
87	Enhanced tunneling in stacked gate dielectrics with ultra-thin HfO2 layers sandwiched between thicker SiO2 layers. Applied Surface Science, 2004, 234, 240-245.	3.1	2
88	Quantum Confinement and Interface States in ZnO Nanocrystalline Thin-Film Transistors. IEEE Transactions on Electron Devices, 2018, 65, 1787-1795.	1.6	2
89	Interfacial Chemistry of Oxides on III-V Compound Semiconductors. , 2010, , 131-172.		2
90	Characterization of Electrically Active Interfacial Defects in High-k Gate Dielectrics. ECS Transactions, 2007, 11, 393-406.	0.3	1

#	Article	IF	CITATIONS
91	Trigonal Tellurium Nanostructure Formation Energy and Band gap. , 2019, , .		1
92	Substitutional and Interstitial Diffusion of Ni across the NiSi/Si interface. Microscopy and Microanalysis, 2012, 18, 344-345.	0.2	0
93	Electrical characterization of process induced effects on non-silicon devices. , 2018, , .		0
94	Materials and Device Strategies for Nanoelectronic 3D Heterogeneous Integration. , 2021, , .		0