
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5021954/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Refined Global Analysis of <i>Bemisia tabaci</i> (Hemiptera: Sternorrhyncha: Aleyrodoidea:) Tj ETQq1 1 0.784314 of the Entomological Society of America, 2010, 103, 196-208.	4 rgBT /Ον 1.3	erlock 10 Tf 585
2	INVITED REVIEW: Local adaptation and species segregation in two mussel (Mytilus edulisÂ×ÂMytilus) Tj ETQq0	0 0 rgBT // 2.0	Overlock 10
3	Reproductive Output and Duration of the Pelagic Larval Stage Determine Seascape-Wide Connectivity of Marine Populations. Integrative and Comparative Biology, 2012, 52, 525-537.	0.9	211
4	Deep reefs are not universal refuges: Reseeding potential varies among coral species. Science Advances, 2017, 3, e1602373.	4.7	193
5	Population subdivision in marine environments: the contributions of biogeography, geographical distance and discontinuous habitat to genetic differentiation in a blennioid fish, Axoclinus nigricaudus. Molecular Ecology, 2001, 10, 1439-1453.	2.0	179
6	Genetic Divergence across Habitats in the Widespread Coral Seriatopora hystrix and Its Associated Symbiodinium. PLoS ONE, 2010, 5, e10871.	1.1	159
7	Larval spatial distributions and other early life–history characteristics predict genetic differentiation in eastern Pacific blennioid fishes. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 1931-1936.	1.2	146
8	Human effects on ecological connectivity in aquatic ecosystems: Integrating scientific approaches to support management and mitigation. Science of the Total Environment, 2015, 534, 52-64.	3.9	143
9	Effects of geography and life history traits on genetic differentiation in benthic marine fishes. Ecography, 2011, 34, 566-575.	2.1	141
10	ECOLOGICAL GENETICS IN THE NORTH ATLANTIC: ENVIRONMENTAL GRADIENTS AND ADAPTATION AT SPECIFIC LOCI. Ecology, 2008, 89, S91-107.	1.5	124
11	Navigating the currents of seascape genomics: how spatial analyses can augment population genomic studies. Environmental Epigenetics, 2016, 62, 581-601.	0.9	108
12	Seascape Genetics: Populations, Individuals, and Genes Marooned and Adrift. Geography Compass, 2013, 7, 197-216.	1.5	96
13	Adaptive divergence in a scleractinian coral: physiological adaptation of Seriatopora hystrix to shallow and deep reef habitats. BMC Evolutionary Biology, 2011, 11, 303.	3.2	93
14	Evolving coral reef conservation with genetic information. Bulletin of Marine Science, 2014, 90, 159-185.	0.4	89
15	Incorporating larval dispersal into <scp>MPA</scp> design for both conservation and fisheries. Ecological Applications, 2017, 27, 925-941.	1.8	83
16	Evidence for Selection at Multiple Allozyme Loci Across a Mussel Hybrid Zone. Molecular Biology and Evolution, 2002, 19, 347-351.	3.5	72
17	The Genomic Observatories Metadatabase (GeOMe): A new repository for field and sampling event metadata associated with genetic samples. PLoS Biology, 2017, 15, e2002925.	2.6	72
18	Dispersal Capacity Predicts Both Population Genetic Structure and Species Richness in Reef Fishes.	1.0	70

Dispersal Capacity Predicts Both Population Genetic Structure and Species Richness in Reef Fishes. American Naturalist, 2014, 184, 52-64. 18

#	Article	IF	CITATIONS
19	The emergent geography of biophysical dispersal barriers across the Indoâ€West Pacific. Diversity and Distributions, 2015, 21, 465-476.	1.9	68
20	Taking the Plunge: An Introduction to Undertaking Seascape Genetic Studies and using Biophysical Models. Geography Compass, 2013, 7, 173-196.	1.5	58
21	Environmental and geographic variables are effective surrogates for genetic variation in conservation planning. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12755-12760.	3.3	57
22	DIFFERENTIAL PATTERNS OF MALE AND FEMALE MTDNA EXCHANGE ACROSS THE ATLANTIC OCEAN IN THE BLUE MUSSEL, MYTILUS EDULIS. Evolution; International Journal of Organic Evolution, 2004, 58, 2438-2451.	1.1	55
23	Positive Selection on an Acrosomal Sperm Protein, M7 Lysin, in Three Species of the Mussel Genus Mytilus. Molecular Biology and Evolution, 2003, 20, 200-207.	3.5	54
24	CRYPTIC VICARIANCE IN GULF OF CALIFORNIA FISHES PARALLELS VICARIANT PATTERNS FOUND IN BAJA CALIFORNIA MAMMALS AND REPTILES. Evolution; International Journal of Organic Evolution, 2005, 59, 2678-2690.	1.1	52
25	Geographic Variation and Positive Selection on M7 Lysin, an Acrosomal Sperm Protein in Mussels (Mytilus spp.). Molecular Biology and Evolution, 2006, 23, 1952-1965.	3.5	51
26	Genetic connectivity patterns of Pocillopora verrucosa in southern African Marine Protected Areas. Marine Ecology - Progress Series, 2008, 354, 161-168.	0.9	51
27	Permanent Genetic Resources added to Molecular Ecology Resources Database 1 June 2010 – 31 July 2010. Molecular Ecology Resources, 2010, 10, 1106-1108.	2.2	48
28	Vicariance and dispersal across an intermittent barrier: population genetic structure of marine animals across the Torres Strait land bridge. Coral Reefs, 2011, 30, 937-949.	0.9	48
29	Seascape features, rather than dispersal traits, predict spatial genetic patterns in coâ€distributed reef fishes. Journal of Biogeography, 2016, 43, 256-267.	1.4	48
30	Marine Reserve Targets to Sustain and Rebuild Unregulated Fisheries. PLoS Biology, 2017, 15, e2000537.	2.6	48
31	A Novel Widespread Cryptic Species and Phylogeographic Patterns within Several Giant Clam Species (Cardiidae: Tridacna) from the Indo-Pacific Ocean. PLoS ONE, 2013, 8, e80858.	1.1	46
32	The scope of published population genetic data for Indo-Pacific marine fauna and future research opportunities in the region. Bulletin of Marine Science, 2014, 90, 47-78.	0.4	44
33	The molecular biogeography of the Indoâ€Pacific: Testing hypotheses with multispecies genetic patterns. Global Ecology and Biogeography, 2019, 28, 943-960.	2.7	43
34	Twin introductions by independent invader mussel lineages are both associated with recent admixture with a native congener in Australia. Evolutionary Applications, 2020, 13, 515-532.	1.5	43
35	Congruent patterns of connectivity can inform management for broadcast spawning corals on the Great Barrier Reef. Molecular Ecology, 2016, 25, 3065-3080.	2.0	41
36	Not the time or the place: the missing spatioâ€ŧemporal link in publicly available genetic data. Molecular Ecology, 2015, 24, 3802-3809.	2.0	38

#	Article	IF	CITATIONS
37	Largest of All Electric-Fish Snouts: Hypermorphic Facial Growth in Male Apteronotus hasemani and the Identity of Apteronotus anas (Gymnotiformes: Apteronotidae). Copeia, 2002, 2002, 52-61.	1.4	33
38	Return of the ghosts of dispersal past: historical spread and contemporary gene flow in the blue sea star <l>Linckia laevigata</l> . Bulletin of Marine Science, 2014, 90, 399-425.	0.4	32
39	Building a global genomics observatory: Using GEOME (the Genomic Observatories Metadatabase) to expedite and improve deposition and retrieval of genetic data and metadata for biodiversity research. Molecular Ecology Resources, 2020, 20, 1458-1469.	2.2	32
40	Patterns of mtDNA diversity in North Atlantic populations of the mussel Mytilus edulis. Marine Biology, 2008, 155, 399-412.	0.7	31
41	Poor data stewardship will hinder global genetic diversity surveillance. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	31
42	AnÂintertidal fish shows thermal acclimation despite living in a rapidly fluctuating environment. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2019, 189, 385-398.	0.7	29
43	Anthropogenic hybridization at sea: three evolutionary questions relevant to invasive species management. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190547.	1.8	28
44	Asymmetric dispersal is a critical element of concordance between biophysical dispersal models and spatial genetic structure in Great Barrier Reef corals. Diversity and Distributions, 2019, 25, 1684-1696.	1.9	27
45	Magnificent dimensions, varied forms, and brilliant colors: the molecular ecology and evolution of the Indian and Pacific oceans. Bulletin of Marine Science, 2014, 90, 1-11.	0.4	24
46	A phylogenetic analysis of egg size, clutch size, spawning mode, adult body size, and latitude in reef fishes. Coral Reefs, 2016, 35, 387-397.	0.9	24
47	Reserve Sizes Needed to Protect Coral Reef Fishes. Conservation Letters, 2018, 11, e12415.	2.8	24
48	Comparative genomics reveals divergent thermal selection in warm―and coldâ€ŧolerant marine mussels. Molecular Ecology, 2020, 29, 519-535.	2.0	24
49	Models based on individual level movement predict spatial patterns of genetic relatedness for two Australian forest birds. Landscape Ecology, 2011, 26, 137-148.	1.9	23
50	Extensive genetic population structure in the Indo–West Pacific spot-tail shark, <i>Carcharhinus sorrah</i> . Bulletin of Marine Science, 2014, 90, 427-454.	0.4	23
51	Population structure, mitochondrial polyphyly and the repeated loss of human biting ability in anopheline mosquitoes from the southwest Pacific. Molecular Ecology, 2012, 21, 4327-4343.	2.0	22
52	Latitudinal variability in spatial genetic structure in the invasive ascidian, Styela plicata. Marine Biology, 2010, 157, 1955-1965.	0.7	21
53	Genetic and phenotypic diversity in the wedgefish Rhynchobatus australiae, a threatened ray of high value in the shark fin trade. Marine Ecology - Progress Series, 2016, 548, 165-180.	0.9	21
54	Latitudeâ€wide genetic patterns reveal historical effects and contrasting patterns of turnover and nestedness at the range peripheries of a tropical marine fish. Ecography, 2015, 38, 1212-1224.	2.1	20

#	Article	IF	CITATIONS
55	Gene flow in the green mirid, <i>Creontiades dilutus</i> (Hemiptera: Miridae), across arid and agricultural environments with different host plant species. Ecology and Evolution, 2013, 3, 807-821.	0.8	19
56	Evaluating edge-of-range genetic patterns for tropical echinoderms, <i>Acanthaster planci</i> and <i>Tripneustes gratilla</i> , of the Kermadec Islands, southwest Pacific. Bulletin of Marine Science, 2014, 90, 379-397.	0.4	19
57	Sharing and reporting benefits from biodiversity research. Molecular Ecology, 2021, 30, 1103-1107.	2.0	19
58	Rapid genetic turnover in populations of the insect pest <i>Bemisia tabaci</i> Middle East: Asia Minor 1 in an agricultural landscape. Bulletin of Entomological Research, 2012, 102, 539-549.	0.5	18
59	Species composition and hybridisation of mussel species (Bivalvia: Mytilidae) in Australia. Marine and Freshwater Research, 2016, 67, 1955.	0.7	18
60	Historical divergences associated with intermittent land bridges overshadow isolation by larval dispersal in coâ€distributed species of <i>Tridacna</i> giant clams. Journal of Biogeography, 2018, 45, 848-858.	1.4	18
61	Seascape Genomics: Contextualizing Adaptive and Neutral Genomic Variation in the Ocean Environment. Population Genomics, 2019, , 171-218.	0.2	18
62	Larval traits show temporally consistent constraints, but are decoupled from postsettlement juvenile growth, in an intertidal fish. Journal of Animal Ecology, 2018, 87, 1353-1363.	1.3	16
63	<scp>neogen</scp> : A tool to predict genetic effective population size (<i>N</i> _e) for species with generational overlap and to assist empirical <i>N</i> _e study design. Molecular Ecology Resources, 2019, 19, 260-271.	2.2	15
64	Population Genetic Diversity in the Australian â€~Seascape': A Bioregion Approach. PLoS ONE, 2015, 10, e0136275.	1.1	14
65	Site fidelity, size, and morphology may differ by tidal position for an intertidal fish, <i>Bathygobius cocosensis</i> (Perciformes-Gobiidae), in Eastern Australia. PeerJ, 2016, 4, e2263.	0.9	12
66	Cleaning up the biogeography of Labroides dimidiatus using phylogenetics and morphometrics. Coral Reefs, 2014, 33, 223-233.	0.9	11
67	Cryptic vicariance in Gulf of California fishes parallels vicariant patterns found in Baja California mammals and reptiles. Evolution; International Journal of Organic Evolution, 2005, 59, 2678-90.	1.1	11
68	Hybridization in postglacial marine habitats. Molecular Ecology, 2007, 16, 3971-3972.	2.0	10
69	Preâ€introduction introgression contributes to parallel differentiation and contrasting hybridization outcomes between invasive and native marine mussels. Journal of Evolutionary Biology, 2021, 34, 175-192.	0.8	10
70	Integrating morphological and genetic data at different spatial scales in a cosmopolitan marine turtle species: challenges for management and conservation. Zoological Journal of the Linnean Society, 2021, 191, 434-453.	1.0	9
71	Cryptic diversity and spatial genetic variation in the coral <i>Acropora tenuis</i> and its endosymbionts across the Great Barrier Reef. Evolutionary Applications, 2023, 16, 293-310.	1.5	9
72	DIFFERENTIAL PATTERNS OF MALE AND FEMALE MTDNA EXCHANGE ACROSS THE ATLANTIC OCEAN IN THE BLUE MUSSEL, MYTILUS EDULIS. Evolution; International Journal of Organic Evolution, 2004, 58, 2438.	1.1	8

#	Article	IF	CITATIONS
73	Systematics and phylogenetic species delimitation within Polinices s.l. (Caenogastropoda: Naticidae) based on molecular data and shell morphology. Organisms Diversity and Evolution, 2012, 12, 349-375.	0.7	8
74	Urban development explains reduced genetic diversity in a narrow range endemic freshwater fish. Conservation Genetics, 2015, 16, 625-634.	0.8	8
75	Intertidal gobies acclimate rate of luminance change for background matching with shifts in seasonal temperature. Journal of Animal Ecology, 2020, 89, 1735-1746.	1.3	7
76	Regional patterns of mtDNA diversity in Styela plicata, an invasive ascidian, from Australian and New Zealand marinas. Marine and Freshwater Research, 2013, 64, 139.	0.7	6
77	Deep connections: Divergence histories with gene flow in mesophotic <i>Agaricia</i> corals. Molecular Ecology, 2022, 31, 2511-2527.	2.0	6
78	Revisiting the "Centre Hypotheses―of the Indoâ€West Pacific: Idiosyncratic genetic diversity of nine reef species offers weak support for the Coral Triangle as a centre of genetic biodiversity. Journal of Biogeography, 2018, 45, 1806-1817.	1.4	5
79	Clones in space—how sampling can bias genetic diversity estimates in corals: editorial comment on the feature article by Gorospe et al Marine Biology, 2015, 162, 913-915.	0.7	4
80	Global connections with some genomic differentiation occur between Indoâ€Pacific and Atlantic Ocean wahoo, a large circumtropical pelagic fish. Journal of Biogeography, 2021, 48, 2053-2067.	1.4	4
81	Women in biogeography. Journal of Biogeography, 2021, 48, 2117-2120.	1.4	4
82	Characterisation and cross-amplification of 21 novel microsatellite loci for the dusky shark, Carcharhinus obscurus. Conservation Genetics Resources, 2015, 7, 909-912.	0.4	3
83	Comparative phylogeography of two coâ€distributed but ecologically distinct rainbowfishes of farâ€northern Australia. Journal of Biogeography, 2018, 45, 127-141.	1.4	3
84	The complete mitochondrial genome of <i>Bathygobius cocosensis</i> (Perciformes, Gobiidae). Mitochondrial DNA Part B: Resources, 2018, 3, 217-219.	0.2	3
85	Rapid larval growth is costly for post-metamorphic thermal performance in a Great Barrier Reef fish. Coral Reefs, 2019, 38, 895-907.	0.9	3
86	Pinpointing genetic breaks in the southeastern Pacific: Phylogeography and genetic structure of a commercially important tunicate. Journal of Biogeography, 2021, 48, 2604-2615.	1.4	3
87	CRYPTIC VICARIANCE IN GULF OF CALIFORNIA FISHES PARALLELS VICARIANT PATTERNS FOUND IN BAJA CALIFORNIA MAMMALS AND REPTILES. Evolution; International Journal of Organic Evolution, 2005, 59, 2678.	1.1	2
88	Do tiny fish rule the reefs?. Science, 2019, 364, 1128-1130.	6.0	2
89	Population genetics ofAnopheles koliensisthrough Papua New Guinea: New cryptic species and landscape topography effects on genetic connectivity. Ecology and Evolution, 2019, 9, 13375-13388.	0.8	1
90	Genetic and phenotypic variation exhibit both predictable and stochastic patterns across an intertidal fish metapopulation. Molecular Ecology, 2021, 30, 4392-4414.	2.0	1

#	Article	IF	CITATIONS
91	Planning for Field Based Biological Sample Collection: Using the Genomic Observatories Metadatabase Project Interface. Biodiversity Information Science and Standards, 0, 2, e25651.	0.0	1
92	North Atlantic marine communities through time. Molecular Ecology, 2010, 19, 4389-4390.	2.0	0
93	Characterisation and cross-amplification of 19 novel microsatellite loci for the sandbar shark, Carcharhinus plumbeus. Conservation Genetics Resources, 2015, 7, 913-915.	0.4	0
94	Skeletal deformities and meristic trait variations are common in the intertidal fish Bathygobius cocosensis (Perciformesâ€Gobiidae). Journal of Fish Diseases, 2021, 44, 665-673.	0.9	0