Lilian Varga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5021457/publications.pdf

Version: 2024-02-01

155 papers	5,341 citations	36 h-index	98622 67 g-index
161	161	161	2941 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Hereditary and acquired angioedema: Problems and progress: Proceedings of the third C1 esterase inhibitor deficiency workshop and beyond. Journal of Allergy and Clinical Immunology, 2004, 114, S51-S131.	1.5	582
2	2010 International consensus algorithm for the diagnosis, therapy and management of hereditary angioedema. Allergy, Asthma and Clinical Immunology, 2010, 6, 24.	0.9	443
3	Hereditary angiodema: a current state-of-the-art review, VII: Canadian Hungarian 2007 International Consensus Algorithm for the Diagnosis, Therapy, and Management of Hereditary Angioedema. Annals of Allergy, Asthma and Immunology, 2008, 100, S30-S40.	0.5	181
4	Canadian 2003 International Consensus Algorithm for the Diagnosis, Therapy, and Management of Hereditary Angioedema. Journal of Allergy and Clinical Immunology, 2004, 114, 629-637.	1.5	177
5	International consensus on the diagnosis and management of pediatric patients with hereditary angioedema with C1 inhibitor deficiency. Allergy: European Journal of Allergy and Clinical Immunology, 2017, 72, 300-313.	2.7	153
6	The international WAO/EAACI guideline for the management of hereditary angioedemaâ€"The 2021 revision and update. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 1961-1990.	2.7	153
7	Hereditary angioedema: A decade of human C1-inhibitor concentrate therapy. Journal of Allergy and Clinical Immunology, 2007, 120, 941-947.	1.5	118
8	The influence of trigger factors on hereditary angioedema due to C1-inhibitor deficiency. Orphanet Journal of Rare Diseases, 2014, 9, 44.	1.2	115
9	Diversity in Intrinsic Strengths of the Human Complement System: Serum C4 Protein Concentrations Correlate with <i>C4</i> Gene Size and Polygenic Variations, Hemolytic Activities, and Body Mass Index. Journal of Immunology, 2003, 171, 2734-2745.	0.4	108
10	Studies on the interactions between C-reactive protein and complement proteins. Immunology, 2007, 121, 40-50.	2.0	104
11	Management of Hereditary Angioedema in Pediatric Patients. Pediatrics, 2007, 120, e713-e722.	1.0	100
12	Clinical management of hereditary angio-oedema in children. Pediatric Allergy and Immunology, 2002, 13, 153-161.	1.1	99
13	Adverse effects of danazol prophylaxis on the lipid profiles of patients with hereditary angioedema. Journal of Allergy and Clinical Immunology, 2005, 115, 864-869.	1.5	96
14	Association of high serum concentration of the third component of complement (C3) with pre-existing severe coronary artery disease and new vascular events in women. Atherosclerosis, 2004, 177, 383-389.	0.4	86
15	Recombinant human C1-inhibitor in the treatment of acute angioedema attacks. Transfusion, 2007, 47, 1028-1032.	0.8	85
16	Functional C1-Inhibitor diagnostics in hereditary angioedema: Assay evaluation and recommendations. Journal of Immunological Methods, 2008, 338, 14-20.	0.6	84
17	Shortâ€term prophylaxis in hereditary angioedema due to deficiency of the <scp>C</scp> 1â€inhibitor – a longâ€term survey. Allergy: European Journal of Allergy and Clinical Immunology, 2012, 67, 1586-1593.	2.7	75
18	Strong complement activation after acute ischemic stroke is associated with unfavorable outcomes. Atherosclerosis, 2009, 204, 315-320.	0.4	71

#	Article	IF	CITATIONS
19	Antibodies against human heat-shock protein (hsp) 60 and mycobacterial hsp65 differ in their antigen specificity and complement-activating ability. International Immunology, 1999, 11, 1363-1370.	1.8	68
20	The efficacy of short-term danazol prophylaxis in hereditary angioedema patients undergoing maxillofacial and dental procedures. Journal of Oral and Maxillofacial Surgery, 1999, 57, 404-408.	0.5	68
21	Novel duplication in the F12 gene in a patient with recurrent angioedema. Clinical Immunology, 2013, 149, 142-145.	1.4	66
22	Mutation screening of the C1 inhibitor gene among Hungarian patients with hereditary angioedema. Human Mutation, 2003, 22, 498-498.	1.1	63
23	Hereditary angioedema: Molecular and clinical differences among European populations. Journal of Allergy and Clinical Immunology, 2015, 135, 570-573.e10.	1.5	63
24	Ultrasonography in the diagnosis and monitoring of ascites in acute abdominal attacks of hereditary angioneurotic oedema. European Journal of Gastroenterology and Hepatology, 2001, 13, 1225-1230.	0.8	55
25	Eradication of Helicobacter pylori and improvement of hereditary angioneurotic oedema. Lancet, The, 2001, 358, 1695-1696.	6.3	54
26	Sex hormones in hereditary angioneurotic oedema. Clinical Endocrinology, 2004, 60, 508-515.	1.2	54
27	Long-term efficacy of danazol treatment in hereditary angioedema. European Journal of Clinical Investigation, 2011, 41, 256-262.	1.7	51
28	Dancing with Complement C4 and the RP-C4-CYP21-TNX (RCCX) Modules of the Major Histocompatibility Complex. Progress in Molecular Biology and Translational Science, 2003, 75, 217-292.	1.9	50
29	Erythema Marginatum Preceding an Acute Oedematous Attack of Hereditary Angioneurotic Oedema. Acta Dermato-Venereologica, 2001, 81, 376-377.	0.6	45
30	The effect of long-term danazol prophylaxis on liver function in hereditary angioedemaâ€"a longitudinal study. European Journal of Clinical Pharmacology, 2010, 66, 419-426.	0.8	44
31	C1-inhibitor autoantibodies in SLE. Lupus, 2010, 19, 634-638.	0.8	43
32	"Nuts and Bolts―of Laboratory Evaluation of Angioedema. Clinical Reviews in Allergy and Immunology, 2016, 51, 140-151.	2.9	43
33	<i>F12</i> â€46C/T polymorphism as modifier of the clinical phenotype of hereditary angioedema. Allergy: European Journal of Allergy and Clinical Immunology, 2015, 70, 1661-1664.	2.7	42
34	C1-inhibitor (C1-INH) autoantibodies in hereditary angioedema. Molecular Immunology, 2007, 44, 1454-1460.	1.0	41
35	Baseline level of functional C1-inhibitor correlates with disease severity scores in hereditary angioedema. Clinical Immunology, 2010, 134, 354-358.	1.4	41
36	Comprehensive study into the activation of the plasma enzyme systems during attacks of hereditary angioedema due to C1-inhibitor deficiency. Orphanet Journal of Rare Diseases, 2015, 10, 132.	1.2	39

#	Article	IF	Citations
37	The international WAO/EAACI guideline for the management of hereditary angioedema – The 2021 revision and update. World Allergy Organization Journal, 2022, 15, 100627.	1.6	37
38	The Levels of the Lectin Pathway Serine Protease MASP-1 and Its Complex Formation with C1 Inhibitor Are Linked to the Severity of Hereditary Angioedema. Journal of Immunology, 2015, 195, 3596-3604.	0.4	36
39	Endothelial cell activation during edematous attacks of hereditary angioedema types I and II. Journal of Allergy and Clinical Immunology, 2014, 133, 1686-1691.	1.5	35
40	The role of the complement system in hereditary angioedema. Molecular Immunology, 2017, 89, 59-68.	1.0	35
41	High levels of antibodies against Clq are associated with disease activity and nephritis but not with other organ manifestations in SLE patients. Clinical and Experimental Rheumatology, 2001, 19, 667-72.	0.4	34
42	Less severe clinical manifestations in patients with hereditary angioedema with missense C1INH gene mutations. Journal of Allergy and Clinical Immunology, 2013, 131, 1708-1711.e3.	1.5	33
43	Association between early onset and organ manifestations of systemic lupus erythematosus (SLE) and a down-regulating promoter polymorphism in the MBL2 gene. Clinical Immunology, 2007, 125, 230-236.	1.4	32
44	Long-term danazol prophylaxis does not lead to increased carotid intima-media thickness in hereditary angioedema patients. Atherosclerosis, 2008, 198, 184-191.	0.4	30
45	Depressed classical complement pathway activities in chronic lymphocytic leukaemia. Clinical and Experimental Immunology, 1985, 60, 489-95.	1.1	30
46	Patterns of C1-Inhibitor/Plasma Serine Protease Complexes in Healthy Humans and in Hereditary Angioedema Patients. Frontiers in Immunology, 2020, 11, 794.	2.2	29
47	Definition, aims, and implementation of GA ² LEN/HAEi Angioedema Centers of Reference and Excellence. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 2115-2123.	2.7	29
48	C1 and C4 abnormalities in chronic lymphocytic leukaemia and their significance. Immunology Letters, 1987, 14, 255-259.	1.1	28
49	Danazol therapy for hereditary angio-oedema in children. Lancet, The, 1999, 354, 1031-1032.	6.3	27
50	rhC1INH: a new drug for the treatment of attacks in hereditary angioedema caused by C1-inhibitor deficiency. Expert Review of Clinical Immunology, 2011, 7, 143-153.	1.3	27
51	Treatment of attacks with plasma-derived C1-inhibitor concentrate in pediatric hereditary angioedema patients. Journal of Allergy and Clinical Immunology, 2013, 131, 909-911.e5.	1.5	27
52	Low activity of the classical complement pathway predicts short survival of patients with chronic lymphocytic leukaemia. Clinical and Experimental Immunology, 2008, 99, 112-116.	1.1	26
53	Role of complement in the pathomechanism of atherosclerotic vascular diseases. Molecular Immunology, 2009, 46, 2784-2793.	1.0	26
54	Usefulness of detection of complement activation products in evaluating SLE activity. Lupus, 2000, 9, 19-25.	0.8	25

#	Article	IF	CITATIONS
55	Lack of increased prevalence of immunoregulatory disorders in hereditary angioedema due to C1-inhibitor deficiency. Clinical Immunology, 2011, 141, 58-66.	1.4	25
56	Risk of thromboembolism in patients with hereditary angioedema treated with plasma-derived C1-inhibitor. Allergy and Asthma Proceedings, 2016, 37, 164-170.	1.0	25
57	Frequency of the virilising effects of attenuated androgens reported by women with hereditary angioedema. Orphanet Journal of Rare Diseases, 2014, 9, 205.	1.2	24
58	Neutrophil activation during attacks in patients with hereditary angioedema due to C1-inhibitor deficiency. Orphanet Journal of Rare Diseases, 2015, 10, 156.	1.2	24
59	Angiooedema Due to Acquired Deficiency of C1-Esterase Inhibitor Associated with Leucocytoclastic Vasculitis. Acta Dermato-Venereologica, 2001, 81, 298-300.	0.6	23
60	Ecallantide is a novel treatment for attacks of hereditary angioedema due to C1 inhibitor deficiency. Clinical, Cosmetic and Investigational Dermatology, 2011, 4, 61.	0.8	23
61	First report of icatibant treatment in a pregnant patient with hereditary angioedema. Journal of Obstetrics and Gynaecology Research, 2016, 42, 1026-1028.	0.6	23
62	High levels of acute phase proteins and soluble 70ÂkDa heat shock proteins are independent and additive risk factors for mortality in colorectal cancer. Cell Stress and Chaperones, 2011, 16, 49-55.	1.2	22
63	In vitro complement activation by ragweed allergen extract in the sera of ragweed allergic and non-allergic persons. Immunology Letters, 1995, 48, 65-71.	1.1	21
64	Angioedema due to acquired C1-esterase inhibitor deficiency in a patient with Helicobacter pylori infection. Zeitschrift Fur Gastroenterologie, 1999, 37, 513-8.	0.2	21
65	Treatment with C1-inhibitor concentrate does not induce IgM type anti-C1 inhibitor antibodies in patients with hereditary angioedema. Molecular Immunology, 2011, 48, 572-576.	1.0	20
66	Prophylactic therapy in children with hereditary angioedema. Journal of Allergy and Clinical Immunology, 2013, 131, 579-582.e2.	1.5	20
67	A novel assay to diagnose hereditary angioedema utilizing inhibition of bradykinin-forming enzymes. Allergy: European Journal of Allergy and Clinical Immunology, 2015, 70, 115-119.	2.7	20
68	Coincidence of hereditary angioedema (HAE) with Crohn's Disease. Immunological Investigations, 1999, 28, 43-53.	1.0	19
69	Elevated complement C3 is associated with early restenosis after eversion carotid endarterectomy. Thrombosis and Haemostasis, 2006, 96, 529-534.	1.8	19
70	A systematic analysis of the complement pathways in patients with neuromyelitis optica indicates alteration but no activation during remission. Molecular Immunology, 2014, 57, 200-209.	1.0	19
71	Functional analysis of the mannose-binding lectin complement pathway in normal pregnancy and preeclampsia. Journal of Reproductive Immunology, 2010, 87, 90-96.	0.8	18
72	Parameters of the classical complement pathway predict disease severity in hereditary angioedema. Clinical Immunology, 2011, 139, 85-93.	1.4	17

#	Article	lF	CITATIONS
73	Association of celiac disease and hereditary angioneurotic edema. American Journal of Gastroenterology, 2002, 97, 2682-2683.	0.2	16
74	Successful pregnancy outcome after treatment with C1-inhibitor concentrate in a patient with hereditary angioedema and a history of four miscarriages. European Journal of Obstetrics, Gynecology and Reproductive Biology, 2012, 165, 366-367.	0.5	16
75	Novel Vasoregulatory Aspects of Hereditary Angioedema: the Role of Arginine Vasopressin, Adrenomedullin and Endothelin-1. Journal of Clinical Immunology, 2016, 36, 160-170.	2.0	16
76	The Importance of Complement Testing in Acquired Angioedema Related to Angiotensin-Converting Enzyme Inhibitors. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 947-955.	2.0	16
77	A followâ€up survey of patients with acquired angioedema due to C1â€inhibitor deficiency. Journal of Internal Medicine, 2021, 289, 547-558.	2.7	16
78	Immunological alterations in anti-HTLV-III negative haemophiliacs and homosexual men in Hungary. Immunology Letters, 1985, 11, 305-310.	1.1	15
79	The severity of clinical symptoms in ragweed-allergic patients is related to the extent of ragweed-induced complement activation in their sera. Allergy: European Journal of Allergy and Clinical Immunology, 1997, 52, 1110-1114.	2.7	15
80	Acquired angioedema associated with chronic hepatitis C. Journal of Allergy and Clinical Immunology, 1999, 103, 711-712.	1.5	15
81	High normal serum levels of C3 and C1 inhibitor, two acute-phase proteins belonging to the complement system, occur more frequently in patients with Crohn's disease than ulcerative colitis. Digestive Diseases and Sciences, 2003, 48, 1186-1192.	1.1	15
82	Relationship between complement components C4A and C4B diversities and two TNFA promoter polymorphisms in two healthy Caucasian populations. Human Immunology, 2003, 64, 543-552.	1.2	15
83	Changes in the acute phase complement component and IL-6 levels in patients with chronic hepatitis C receiving interferon α-2b. Immunology Letters, 2000, 72, 69-74.	1.1	14
84	Depressed activation of the lectin pathway of complement in hereditary angioedema. Clinical and Experimental Immunology, 2008, 153, 68-74.	1.1	14
85	Association of celiac disease and hereditary angioedema due to C1-inhibitor deficiency. Screening patients with hereditary angioedema for celiac disease. European Journal of Gastroenterology and Hepatology, 2011, 23, 238-244.	0.8	14
86	The Hungarian HAE experience. Transfusion and Apheresis Science, 2003, 29, 229-233.	0.5	13
87	Studies on the mechanisms of allergen-induced activation of the classical and lectin pathways of complement. Molecular Immunology, 2003, 39, 839-846.	1.0	13
88	Elevated C1rC1sC1inh levels independently predict atherosclerotic coronary heart disease. Molecular Immunology, 2013, 54, 8-13.	1.0	13
89	Activation of the ficolin-lectin pathway during attacks ofÂhereditary angioedema. Journal of Allergy and Clinical Immunology, 2014, 134, 1388-1393.e1.	1.5	13
90	Complement activation in the nasal mucosa following nasal ragweed-allergen challenge. Pediatric Allergy and Immunology, 2001, 12, 201-207.	1.1	12

#	Article	IF	Citations
91	Successful Outcome Using C1-Inhibitor Concentrate In Acute Pancreatitis Caused By Hereditary Angioedema. Gastroenterology Nursing, 2011, 34, 60-63.	0.2	12
92	C1r-C1s-C1inhibitor (C1rs-C1inh) complex measurements in tears of patients before and after penetrating keratoplasty. Current Eye Research, 2002, 24, 99-104.	0.7	11
93	Early complement activation follows eversion carotid endarterectomy and correlates with the time of clamping of the carotid artery. Molecular Immunology, 2008, 45, 3289-3294.	1.0	11
94	Home treatment of hereditary angioedema with icatibant administered by health care professionals. Journal of Allergy and Clinical Immunology, 2012, 129, 851-852.e2.	1.5	11
95	The use of â€realâ€time' complement analysis to differentiate atypical haemolytic uraemic syndrome from other forms of thrombotic microangiopathies. British Journal of Haematology, 2012, 158, 424-425.	1.2	11
96	The role of ficolins and MASPs in hereditary angioedema due to C1-inhibitor deficiency. Molecular Immunology, 2013, 54, 271-277.	1.0	11
97	How Angioedema Quality of Life Questionnaire Can Help Physicians in Treating C1-Inhibitor Deficiency Patients?. Clinical Reviews in Allergy and Immunology, 2021, 61, 50-59.	2.9	11
98	Ragweed allergy: Correlation between skin reactivity and in vitro complement activation. Immunology Letters, 1998, 64, 119-123.	1.1	10
99	Relationship between copy number of genes (C4A, C4B) encoding the fourth component of complement and the clinical course of hereditary angioedema (HAE). Molecular Immunology, 2007, 44, 2667-2674.	1.0	10
100	Acquired Angioedema Associated with Primary Antiphospholipid Syndrome in a Patient with Antithrombin III Deficiency. International Archives of Allergy and Immunology, 2008, 146, 164-168.	0.9	10
101	A novel assay to quantitate MASP-2/ficolin-3 complexes in serum. Journal of Immunological Methods, 2013, 387, 237-244.	0.6	10
102	Home treatment of attacks with conestat alfa in hereditary angioedema due to C1-inhibitor deficiency. Allergy and Asthma Proceedings, 2014, 35, 255-259.	1.0	10
103	A novel prophylaxis with C1-inhibitor concentrate in hereditary angioedema during erythema marginatum. Immunology Letters, 2017, 189, 90-93.	1.1	10
104	Idiopathic Nonhistaminergic Acquired Angioedema Versus Hereditary Angioedema. Journal of Allergy and Clinical Immunology: in Practice, 2018, 6, 1205-1208.	2.0	10
105	Patients with CLL and Hypocomplementaemia Have an Impaired Serum Bactericidal Activity against the Salmonella minnesota Re Mutant. Complement (Basel, Switzerland), 1988, 5, 40-45.	1.0	9
106	Serum Anti-cholesterol Antibodies in Chronic Hepatitis-C Patients During IFN-?-2b Treatment. Immunobiology, 2003, 207, 161-168.	0.8	9
107	Low C1-Inhibitor Levels Predict Early Restenosis After Eversion Carotid Endarterectomy. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 2756-2762.	1.1	9
108	Acute abdominal attack of hereditary angioneurotic oedema associated with ultrasound abnormalities suggestive of acute hepatitis. Acta Paediatrica, International Journal of Paediatrics, 2002, 91, 971-974.	0.7	9

#	Article	IF	CITATIONS
109	The effect of long-term danazol treatment on haematological parameters in hereditary angioedema. Orphanet Journal of Rare Diseases, 2016, 11, 18.	1.2	9
110	Human Plasma-Derived, Nanofiltered, C1-Inhibitor Concentrate (Cinryze \hat{A}^{\otimes}), a Novel Therapeutic Alternative for the Management of Hereditary Angioedema Resulting from C1-Inhibitor Deficiency. Biologics in Therapy, 2012, 2, 2.	1.8	8
111	Bacteriuria increases the risk of edematous attacks in hereditary angioedema with C1-inhibitor deficiency. Allergy: European Journal of Allergy and Clinical Immunology, 2016, 71, 1791-1793.	2.7	8
112	Treatment of type I and II hereditary angioedema with Rhucin (sup) \hat{A}^{\otimes} (sup), a recombinant human C1 inhibitor. Expert Review of Clinical Immunology, 2008, 4, 653-661.	1.3	7
113	Changes of coagulation parameters during erythema marginatum in patients with hereditary angioedema. International Immunopharmacology, 2020, 81, 106293.	1.7	7
114	The Global Registry for Hereditary Angioedema due to C1-Inhibitor Deficiency. Clinical Reviews in Allergy and Immunology, 2021, 61, 77-83.	2.9	7
115	Deep venous thrombosis associated with acquired angioedema type II in a patient heterozygous for the mutation of factor V Leiden: Effective treatment and follow-up for four years. Thrombosis and Haemostasis, 2006, 95, 898-899.	1.8	7
116	Antiâ€cholesterol antibody levels in hereditary angioedema. Journal of Cellular and Molecular Medicine, 2007, 11, 1377-1383.	1.6	6
117	Management of pregnancies in a hereditary angioedema patient after treatment with attenuated androgens since childhood. Journal of Obstetrics and Gynaecology, 2015, 35, 89-90.	0.4	6
118	Assessment of inhibitory antibodies in patients with hereditary angioedema treated with plasma-derived C1 inhibitor. Annals of Allergy, Asthma and Immunology, 2016, 117, 508-513.	0.5	6
119	Complete kinetic followâ€up of symptoms and complement parameters during a hereditary angioedema attack. Allergy: European Journal of Allergy and Clinical Immunology, 2018, 73, 516-520.	2.7	6
120	Clinical Characteristics and Safety of Plasma-Derived C1-Inhibitor Therapy in Children and Adolescents with Hereditary Angioedema—A Long-Term Survey. Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 2379-2383.	2.0	6
121	Pathways of Neutrophil Granulocyte Activation in Hereditary Angioedema with C1 Inhibitor Deficiency. Clinical Reviews in Allergy and Immunology, 2021, 60, 383-395.	2.9	6
122	The characteristics of upper airway edema in hereditary and acquired angioedema with C1â€inhibitor deficiency. Clinical and Translational Allergy, 2021, 11, e12083.	1.4	6
123	Differences in the Complement Activation Induced by Preformed and Nascent Immune Complexes. Complement and Inflammation, 1991, 8, 43-49.	0.8	5
124	Comparative study of the complement-activating and specific IgE-binding properties of ragweed pollen allergen. Clinical and Experimental Immunology, 1997, 108, 122-127.	1.1	5
125	Strong correlation of high EBNA-1-lgG levels with edematous attacks involving upper airway mucosa in hereditary angioedema due to C1-inhibitor deficiency. Molecular Immunology, 2012, 49, 649-654.	1.0	5
126	Successful prophylaxis with recombinant human C1 inhibitor in a patient with hereditary angioedema. Annals of Allergy, Asthma and Immunology, 2015, 114, 64-65.	0.5	5

#	Article	IF	Citations
127	Screening for Plasminogen Mutations in Hereditary Angioedema Patients. Genes, 2021, 12, 402.	1.0	5
128	Overview of SERPING1 Variations Identified in Hungarian Patients With Hereditary Angioedema. Frontiers in Allergy, 2022, 3, 836465.	1.2	5
129	Decreased inhibition of immune precipitation by sera with the C2 B allotype. Clinical Immunology and Immunopathology, 1991, 59, 65-71.	2.1	4
130	Changes in the levels of some acute-phase proteins in human immunodeficiency virus-1 infected patients, following interleukin-2 treatment. Clinical and Experimental Immunology, 2010, 161, 134-141.	1.1	4
131	The role of complement activation in the pathogenesis of Fuchs' dystrophy. Molecular Immunology, 2014, 58, 177-181.	1.0	4
132	C1 Inhibitor: Quantification and Purification. Methods in Molecular Biology, 2014, 1100, 189-205.	0.4	4
133	Atrial natriuretic peptide as a novel biomarker of hereditary angioedema. Clinical Immunology, 2016, 165, 45-46.	1.4	4
134	Reply. Journal of Allergy and Clinical Immunology, 2017, 139, 1720-1721.	1.5	4
135	Clinical significance of longitudinal complement measurements in recipients of bone marrow transplant. Bone Marrow Transplantation, 1995, 15, 509-14.	1.3	4
136	Acute abdominal attack of hereditary angioneurotic oedema associated with ultrasound abnormalities suggestive of acute hepatitis. Acta Paediatrica, International Journal of Paediatrics, 2002, 91, 971-4.	0.7	4
137	Diagnosing Pediatric Patients With Hereditary C1-Inhibitor Deficiencyâ€"Experience From the Hungarian Angioedema Center of Reference and Excellence. Frontiers in Allergy, 2022, 3, .	1.2	4
138	Absence of Antibodies to Human Immunodeficiency Virus in Homosexual, Hemophiliac, and Heterosexual Men in Budapest, Hungary in 1983-1984. Journal of Infectious Diseases, 1987, 155, 134-136.	1.9	3
139	Streptokinase does not activate the complement system. Blood Coagulation and Fibrinolysis, 2000, 11, 617-622.	0.5	3
140	Alternative complement pathway activation during invasive coronary procedures in acute myocardial infarction and stable angina pectoris. Clinica Chimica Acta, 2016, 463, 138-144.	0.5	3
141	Successful Use of Recombinant Human C1-INH in a Patient with Acquired Angioedema due to C1 Inhibitor Deficiency and an Unusually High Titer of Anti-C1-Inhibitor Autoantibodies. Journal of Investigational Allergology and Clinical Immunology, 2021, 31, 255-256.	0.6	3
142	Evaluation of the efficacy and safety of home treatment with the recombinant human C1-inhibitor in hereditary angioedema resulting from C1-inhibitor deficiency. International Immunopharmacology, 2020, 80, 106216.	1.7	3
143	Granulocyte aggregating activity in sera of workers exposed to textile dust inhalation. Diagnostic Immunology, 1986, 4, 140-4.	0.2	3
144	Monitoring the level of complement components during autologous blood stem cell transplantation in patients with malignant lymphomas. Cancer Immunology, Immunotherapy, 2004, 53, 835-9.	2.0	2

#	Article	IF	CITATIONS
145	Short-term prophylaxis in a patient with acquired C1-INH deficiency. Journal of Allergy and Clinical Immunology, 2014, 134, 478-480.	1.5	2
146	Thyroid hormones and complement parameters in hereditary angioedema with C1-inhibitor deficiency. Annals of Allergy, Asthma and Immunology, 2016, 117, 175-179.	0.5	2
147	The Role of Mannose-binding Lectin in Infectious Complications of Pediatric Hemato-Oncologic Diseases. Pediatric Infectious Disease Journal, 2021, 40, 154-158.	1.1	2
148	Effectiveness of a Hungarian peer education handwashing programme in primary and secondary schools. Developments in Health Sciences, 2020, , .	0.1	2
149	Esophageal leiomyoma incidentally recognized during an acute attack of hereditary angioneurotic edema. Journal of Allergy and Clinical Immunology, 2001, 107, 926-927.	1.5	1
150	Assays for Complement Proteins Encoded in the Class III Region of Human MHC. Current Protocols in Immunology, 2005, 67, Unit 13.7.	3.6	1
151	Are these patients indeed resistant to treatment with C1 inhibitor concentrate?. British Journal of Dermatology, 2012, 166, 225-226.	1.4	1
152	Association of Low Ficolin–Lectin Pathway Parameters with Cardiac Syndrome X. Scandinavian Journal of Immunology, 2016, 84, 174-181.	1.3	1
153	Role of Complement in Allergy. , 2004, , 345-360.		0
154	Coexistent systemic mastocytosis and essential thrombocythemia complicated with monoclonal gammopathy and hypocomplementaemia. Open Medicine (Poland), 2012, 7, 742-746.	0.6	0
155	Acquired Angioedema Due to C1 inhibitor Deficiency Caused by Non-Hodgkin Lymphoma in a Patient with Myasthenia Gravis. Romanian Journal of Laboratory Medicine, 2021, 29, 453-456.	0.1	0